Float
objects represent inexact real numbers using the native architecture's double-precision floating point representation.
Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:
The minimum number of significant decimal digits in a double-precision floating point.
Usually defaults to 15.
The difference between 1 and the smallest double-precision floating point number greater than 1.
Usually defaults to 2.2204460492503131e-16.
An expression representing positive infinity.
The number of base digits for the double
data type.
Usually defaults to 53.
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
The smallest positive normalized number in a double-precision floating point.
Usually defaults to 2.2250738585072014e-308.
If the platform supports denormalized numbers, there are numbers between zero and Float::MIN
. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
The smallest possible exponent value in a double-precision floating point.
Usually defaults to -1021.
An expression representing a value which is “not a number”.
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal.
static VALUE flo_mod(VALUE x, VALUE y) { double fy; if (RB_TYPE_P(y, T_FIXNUM)) { fy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { fy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { fy = RFLOAT_VALUE(y); } else { return rb_num_coerce_bin(x, y, '%'); } return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); }
Returns the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21000000000004 6543.21.modulo(137.24) #=> 92.92999999999961
VALUE rb_float_mul(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '*'); } }
Returns a new Float
which is the product of float
and other
.
VALUE rb_float_pow(VALUE x, VALUE y) { double dx, dy; if (y == INT2FIX(2)) { dx = RFLOAT_VALUE(x); return DBL2NUM(dx * dx); } else if (RB_TYPE_P(y, T_FIXNUM)) { dx = RFLOAT_VALUE(x); dy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { dx = RFLOAT_VALUE(x); dy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { dx = RFLOAT_VALUE(x); dy = RFLOAT_VALUE(y); if (dx < 0 && dy != round(dy)) return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy); } else { return rb_num_coerce_bin(x, y, idPow); } return DBL2NUM(pow(dx, dy)); }
Raises float
to the power of other
.
2.0**3 #=> 8.0
VALUE rb_float_plus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '+'); } }
Returns a new Float
which is the sum of float
and other
.
VALUE rb_float_minus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '-'); } }
Returns a new Float
which is the difference of float
and other
.
VALUE rb_float_uminus(VALUE flt) { return DBL2NUM(-RFLOAT_VALUE(flt)); }
Returns float
, negated.
VALUE rb_float_div(VALUE x, VALUE y) { double num = RFLOAT_VALUE(x); double den; double ret; if (RB_TYPE_P(y, T_FIXNUM)) { den = FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { den = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { den = RFLOAT_VALUE(y); } else { return rb_num_coerce_bin(x, y, '/'); } ret = double_div_double(num, den); return DBL2NUM(ret); }
Returns a new Float
which is the result of dividing float
by other
.
static VALUE flo_lt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '<'); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a < b)?Qtrue:Qfalse; }
Returns true
if float
is less than real
.
The result of NaN < NaN
is undefined, so an implementation-dependent value is returned.
static VALUE flo_le(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, idLE); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a <= b)?Qtrue:Qfalse; }
Returns true
if float
is less than or equal to real
.
The result of NaN <= NaN
is undefined, so an implementation-dependent value is returned.
static VALUE flo_cmp(VALUE x, VALUE y) { double a, b; VALUE i; a = RFLOAT_VALUE(x); if (isnan(a)) return Qnil; if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return LONG2FIX(-FIX2LONG(rel)); return rel; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); } else { if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) { if (RTEST(i)) { int j = rb_cmpint(i, x, y); j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1); return INT2FIX(j); } if (a > 0.0) return INT2FIX(1); return INT2FIX(-1); } return rb_num_coerce_cmp(x, y, id_cmp); } return rb_dbl_cmp(a, b); }
Returns -1, 0, or +1 depending on whether float
is less than, equal to, or greater than real
. This is the basis for the tests in the Comparable
module.
The result of NaN <=> NaN
is undefined, so an implementation-dependent value is returned.
nil
is returned if the two values are incomparable.
MJIT_FUNC_EXPORTED VALUE rb_float_equal(VALUE x, VALUE y) { volatile double a, b; if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { return rb_integer_float_eq(y, x); } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return num_equal(x, y); } a = RFLOAT_VALUE(x); #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; }
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?
, which requires obj
to be a Float
.
1.0 == 1 #=> true
The result of NaN == NaN
is undefined, so an implementation-dependent value is returned.
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?
, which requires obj
to be a Float
.
1.0 == 1 #=> true
The result of NaN == NaN
is undefined, so an implementation-dependent value is returned.
VALUE rb_float_gt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '>'); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a > b)?Qtrue:Qfalse; }
Returns true
if float
is greater than real
.
The result of NaN > NaN
is undefined, so an implementation-dependent value is returned.
static VALUE flo_ge(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse; return Qfalse; } else if (RB_TYPE_P(y, T_FLOAT)) { b = RFLOAT_VALUE(y); #if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, idGE); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a >= b)?Qtrue:Qfalse; }
Returns true
if float
is greater than or equal to real
.
The result of NaN >= NaN
is undefined, so an implementation-dependent value is returned.
VALUE rb_float_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); }
Returns the absolute value of float
.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56 34.56.abs #=> 34.56
Float#magnitude
is an alias for Float#abs
.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
Returns 0 if the value is positive, pi otherwise.
static VALUE flo_ceil(int argc, VALUE *argv, VALUE num) { int ndigits = 0; if (rb_check_arity(argc, 0, 1)) { ndigits = NUM2INT(argv[0]); } return rb_float_ceil(num, ndigits); }
Returns the smallest number greater than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.ceil #=> 2 2.0.ceil #=> 2 (-1.2).ceil #=> -1 (-2.0).ceil #=> -2 1.234567.ceil(2) #=> 1.24 1.234567.ceil(3) #=> 1.235 1.234567.ceil(4) #=> 1.2346 1.234567.ceil(5) #=> 1.23457 34567.89.ceil(-5) #=> 100000 34567.89.ceil(-4) #=> 40000 34567.89.ceil(-3) #=> 35000 34567.89.ceil(-2) #=> 34600 34567.89.ceil(-1) #=> 34570 34567.89.ceil(0) #=> 34568 34567.89.ceil(1) #=> 34567.9 34567.89.ceil(2) #=> 34567.89 34567.89.ceil(3) #=> 34567.89
Note that the limited precision of floating point arithmetic might lead to surprising results:
(2.1 / 0.7).ceil #=> 4 (!)
VALUE rb_float_denominator(VALUE self) { double d = RFLOAT_VALUE(self); VALUE r; if (isinf(d) || isnan(d)) return INT2FIX(1); r = float_to_r(self); return nurat_denominator(r); }
Returns the denominator (always positive). The result is machine dependent.
See also Float#numerator
.
static VALUE flo_divmod(VALUE x, VALUE y) { double fy, div, mod; volatile VALUE a, b; if (RB_TYPE_P(y, T_FIXNUM)) { fy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { fy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { fy = RFLOAT_VALUE(y); } else { return rb_num_coerce_bin(x, y, id_divmod); } flodivmod(RFLOAT_VALUE(x), fy, &div, &mod); a = dbl2ival(div); b = DBL2NUM(mod); return rb_assoc_new(a, b); }
See Numeric#divmod
.
42.0.divmod(6) #=> [7, 0.0] 42.0.divmod(5) #=> [8, 2.0]
MJIT_FUNC_EXPORTED VALUE rb_float_eql(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FLOAT)) { double a = RFLOAT_VALUE(x); double b = RFLOAT_VALUE(y); #if MSC_VERSION_BEFORE(1300) if (isnan(a) || isnan(b)) return Qfalse; #endif if (a == b) return Qtrue; } return Qfalse; }
Returns true
only if obj
is a Float
with the same value as float
. Contrast this with Float#==, which performs type conversions.
1.0.eql?(1) #=> false
The result of NaN.eql?(NaN)
is undefined, so an implementation-dependent value is returned.
VALUE rb_flo_is_finite_p(VALUE num) { double value = RFLOAT_VALUE(num); #ifdef HAVE_ISFINITE if (!isfinite(value)) return Qfalse; #else if (isinf(value) || isnan(value)) return Qfalse; #endif return Qtrue; }
Returns true
if float
is a valid IEEE floating point number, i.e. it is not infinite and Float#nan?
is false
.
static VALUE flo_floor(int argc, VALUE *argv, VALUE num) { int ndigits = 0; if (rb_check_arity(argc, 0, 1)) { ndigits = NUM2INT(argv[0]); } return rb_float_floor(num, ndigits); }
Returns the largest number less than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.floor #=> 1 2.0.floor #=> 2 (-1.2).floor #=> -2 (-2.0).floor #=> -2 1.234567.floor(2) #=> 1.23 1.234567.floor(3) #=> 1.234 1.234567.floor(4) #=> 1.2345 1.234567.floor(5) #=> 1.23456 34567.89.floor(-5) #=> 0 34567.89.floor(-4) #=> 30000 34567.89.floor(-3) #=> 34000 34567.89.floor(-2) #=> 34500 34567.89.floor(-1) #=> 34560 34567.89.floor(0) #=> 34567 34567.89.floor(1) #=> 34567.8 34567.89.floor(2) #=> 34567.89 34567.89.floor(3) #=> 34567.89
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).floor #=> 2 (!)
static VALUE flo_hash(VALUE num) { return rb_dbl_hash(RFLOAT_VALUE(num)); }
Returns a hash code for this float.
See also Object#hash
.
VALUE rb_flo_is_infinite_p(VALUE num) { double value = RFLOAT_VALUE(num); if (isinf(value)) { return INT2FIX( value < 0 ? -1 : 1 ); } return Qnil; }
Returns nil
, -1, or 1 depending on whether the value is finite, -Infinity
, or +Infinity
.
(0.0).infinite? #=> nil (-1.0/0.0).infinite? #=> -1 (+1.0/0.0).infinite? #=> 1
Returns a string containing a representation of self
. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
Returns the absolute value of float
.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56 34.56.abs #=> 34.56
Float#magnitude
is an alias for Float#abs
.
Returns the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21000000000004 6543.21.modulo(137.24) #=> 92.92999999999961
static VALUE flo_is_nan_p(VALUE num) { double value = RFLOAT_VALUE(num); return isnan(value) ? Qtrue : Qfalse; }
Returns true
if float
is an invalid IEEE floating point number.
a = -1.0 #=> -1.0 a.nan? #=> false a = 0.0/0.0 #=> NaN a.nan? #=> true
static VALUE flo_negative_p(VALUE num) { double f = RFLOAT_VALUE(num); return f < 0.0 ? Qtrue : Qfalse; }
Returns true
if float
is less than 0.
static VALUE flo_next_float(VALUE vx) { return flo_nextafter(vx, HUGE_VAL); }
Returns the next representable floating point number.
Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY
.
Float::NAN.next_float is Float::NAN
.
For example:
0.01.next_float #=> 0.010000000000000002 1.0.next_float #=> 1.0000000000000002 100.0.next_float #=> 100.00000000000001 0.01.next_float - 0.01 #=> 1.734723475976807e-18 1.0.next_float - 1.0 #=> 2.220446049250313e-16 100.0.next_float - 100.0 #=> 1.4210854715202004e-14 f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float } #=> 0x1.47ae147ae147bp-7 0.01 # 0x1.47ae147ae147cp-7 0.010000000000000002 # 0x1.47ae147ae147dp-7 0.010000000000000004 # 0x1.47ae147ae147ep-7 0.010000000000000005 # 0x1.47ae147ae147fp-7 0.010000000000000007 # 0x1.47ae147ae148p-7 0.010000000000000009 # 0x1.47ae147ae1481p-7 0.01000000000000001 # 0x1.47ae147ae1482p-7 0.010000000000000012 # 0x1.47ae147ae1483p-7 0.010000000000000014 # 0x1.47ae147ae1484p-7 0.010000000000000016 # 0x1.47ae147ae1485p-7 0.010000000000000018 # 0x1.47ae147ae1486p-7 0.01000000000000002 # 0x1.47ae147ae1487p-7 0.010000000000000021 # 0x1.47ae147ae1488p-7 0.010000000000000023 # 0x1.47ae147ae1489p-7 0.010000000000000024 # 0x1.47ae147ae148ap-7 0.010000000000000026 # 0x1.47ae147ae148bp-7 0.010000000000000028 # 0x1.47ae147ae148cp-7 0.01000000000000003 # 0x1.47ae147ae148dp-7 0.010000000000000031 # 0x1.47ae147ae148ep-7 0.010000000000000033 f = 0.0 100.times { f += 0.1 } f #=> 9.99999999999998 # should be 10.0 in the ideal world. 10-f #=> 1.9539925233402755e-14 # the floating point error. 10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place). (10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp. (10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above. "%a" % 10 #=> "0x1.4p+3" "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
VALUE rb_float_numerator(VALUE self) { double d = RFLOAT_VALUE(self); VALUE r; if (isinf(d) || isnan(d)) return self; r = float_to_r(self); return nurat_numerator(r); }
Returns the numerator. The result is machine dependent.
n = 0.3.numerator #=> 5404319552844595 d = 0.3.denominator #=> 18014398509481984 n.fdiv(d) #=> 0.3
See also Float#denominator
.
static VALUE flo_positive_p(VALUE num) { double f = RFLOAT_VALUE(num); return f > 0.0 ? Qtrue : Qfalse; }
Returns true
if float
is greater than 0.
static VALUE flo_prev_float(VALUE vx) { return flo_nextafter(vx, -HUGE_VAL); }
Returns the previous representable floating point number.
(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
Float::NAN.prev_float is Float::NAN
.
For example:
0.01.prev_float #=> 0.009999999999999998 1.0.prev_float #=> 0.9999999999999999 100.0.prev_float #=> 99.99999999999999 0.01 - 0.01.prev_float #=> 1.734723475976807e-18 1.0 - 1.0.prev_float #=> 1.1102230246251565e-16 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14 f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float } #=> 0x1.47ae147ae147bp-7 0.01 # 0x1.47ae147ae147ap-7 0.009999999999999998 # 0x1.47ae147ae1479p-7 0.009999999999999997 # 0x1.47ae147ae1478p-7 0.009999999999999995 # 0x1.47ae147ae1477p-7 0.009999999999999993 # 0x1.47ae147ae1476p-7 0.009999999999999992 # 0x1.47ae147ae1475p-7 0.00999999999999999 # 0x1.47ae147ae1474p-7 0.009999999999999988 # 0x1.47ae147ae1473p-7 0.009999999999999986 # 0x1.47ae147ae1472p-7 0.009999999999999985 # 0x1.47ae147ae1471p-7 0.009999999999999983 # 0x1.47ae147ae147p-7 0.009999999999999981 # 0x1.47ae147ae146fp-7 0.00999999999999998 # 0x1.47ae147ae146ep-7 0.009999999999999978 # 0x1.47ae147ae146dp-7 0.009999999999999976 # 0x1.47ae147ae146cp-7 0.009999999999999974 # 0x1.47ae147ae146bp-7 0.009999999999999972 # 0x1.47ae147ae146ap-7 0.00999999999999997 # 0x1.47ae147ae1469p-7 0.009999999999999969 # 0x1.47ae147ae1468p-7 0.009999999999999967
static VALUE flo_quo(VALUE x, VALUE y) { return num_funcall1(x, '/', y); }
Returns float / numeric
, same as Float#/.
static VALUE float_rationalize(int argc, VALUE *argv, VALUE self) { double d = RFLOAT_VALUE(self); VALUE rat; int neg = d < 0.0; if (neg) self = DBL2NUM(-d); if (rb_check_arity(argc, 0, 1)) { rat = rb_flt_rationalize_with_prec(self, argv[0]); } else { rat = rb_flt_rationalize(self); } if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num)); return rat; }
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps
is not given, it will be chosen automatically.
0.3.rationalize #=> (3/10) 1.333.rationalize #=> (1333/1000) 1.333.rationalize(0.01) #=> (4/3)
See also Float#to_r
.
static VALUE flo_round(int argc, VALUE *argv, VALUE num) { double number, f, x; VALUE nd, opt; int ndigits = 0; enum ruby_num_rounding_mode mode; if (rb_scan_args(argc, argv, "01:", &nd, &opt)) { ndigits = NUM2INT(nd); } mode = rb_num_get_rounding_option(opt); number = RFLOAT_VALUE(num); if (number == 0.0) { return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0); } if (ndigits < 0) { return rb_int_round(flo_to_i(num), ndigits, mode); } if (ndigits == 0) { x = ROUND_CALL(mode, round, (number, 1.0)); return dbl2ival(x); } if (isfinite(number)) { int binexp; frexp(number, &binexp); if (float_round_overflow(ndigits, binexp)) return num; if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0); f = pow(10, ndigits); x = ROUND_CALL(mode, round, (number, f)); return DBL2NUM(x / f); } return num; }
Returns float
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.4.round #=> 1 1.5.round #=> 2 1.6.round #=> 2 (-1.5).round #=> -2 1.234567.round(2) #=> 1.23 1.234567.round(3) #=> 1.235 1.234567.round(4) #=> 1.2346 1.234567.round(5) #=> 1.23457 34567.89.round(-5) #=> 0 34567.89.round(-4) #=> 30000 34567.89.round(-3) #=> 35000 34567.89.round(-2) #=> 34600 34567.89.round(-1) #=> 34570 34567.89.round(0) #=> 34568 34567.89.round(1) #=> 34567.9 34567.89.round(2) #=> 34567.89 34567.89.round(3) #=> 34567.89
If the optional half
keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode
:
:up
or nil
: round half away from zero (default)
:down
: round half toward zero
:even
: round half toward the nearest even number
2.5.round(half: :up) #=> 3 2.5.round(half: :down) #=> 2 2.5.round(half: :even) #=> 2 3.5.round(half: :up) #=> 4 3.5.round(half: :down) #=> 3 3.5.round(half: :even) #=> 4 (-2.5).round(half: :up) #=> -3 (-2.5).round(half: :down) #=> -2 (-2.5).round(half: :even) #=> -2
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 46 def to_d(precision=Float::DIG+1) BigDecimal(self, precision) end
Returns the value of float
as a BigDecimal
. The precision
parameter is used to determine the number of significant digits for the result (the default is Float::DIG
).
require 'bigdecimal' require 'bigdecimal/util' 0.5.to_d # => 0.5e0 1.234.to_d(2) # => 0.12e1
See also BigDecimal::new
.
static VALUE flo_to_f(VALUE num) { return num; }
Since float
is already a Float
, returns self
.
static VALUE flo_to_i(VALUE num) { double f = RFLOAT_VALUE(num); if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); return dbl2ival(f); }
Returns the float
truncated to an Integer
.
1.2.to_i #=> 1 (-1.2).to_i #=> -1
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i #=> 2 (!)
Returns the float
truncated to an Integer
.
1.2.to_i #=> 1 (-1.2).to_i #=> -1
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i #=> 2 (!)
static VALUE float_to_r(VALUE self) { VALUE f; int n; float_decode_internal(self, &f, &n); #if FLT_RADIX == 2 if (n == 0) return rb_rational_new1(f); if (n > 0) return rb_rational_new1(rb_int_lshift(f, INT2FIX(n))); n = -n; return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n))); #else f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n)); if (RB_TYPE_P(f, T_RATIONAL)) return f; return rb_rational_new1(f); #endif }
Returns the value as a rational.
2.0.to_r #=> (2/1) 2.5.to_r #=> (5/2) -0.75.to_r #=> (-3/4) 0.0.to_r #=> (0/1) 0.3.to_r #=> (5404319552844595/18014398509481984)
NOTE: 0.3.to_r isn't the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn't so.
0.3.to_r == 3/10r #=> false "0.3".to_r == 3/10r #=> true
See also Float#rationalize
.
static VALUE flo_to_s(VALUE flt) { enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; enum {float_dig = DBL_DIG+1}; char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; double value = RFLOAT_VALUE(flt); VALUE s; char *p, *e; int sign, decpt, digs; if (isinf(value)) { static const char minf[] = "-Infinity"; const int pos = (value > 0); /* skip "-" */ return rb_usascii_str_new(minf+pos, strlen(minf)-pos); } else if (isnan(value)) return rb_usascii_str_new2("NaN"); p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e); s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0); if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1; memcpy(buf, p, digs); xfree(p); if (decpt > 0) { if (decpt < digs) { memmove(buf + decpt + 1, buf + decpt, digs - decpt); buf[decpt] = '.'; rb_str_cat(s, buf, digs + 1); } else if (decpt <= DBL_DIG) { long len; char *ptr; rb_str_cat(s, buf, digs); rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2); ptr = RSTRING_PTR(s) + len; if (decpt > digs) { memset(ptr, '0', decpt - digs); ptr += decpt - digs; } memcpy(ptr, ".0", 2); } else { goto exp; } } else if (decpt > -4) { long len; char *ptr; rb_str_cat(s, "0.", 2); rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs); ptr = RSTRING_PTR(s); memset(ptr += len, '0', -decpt); memcpy(ptr -= decpt, buf, digs); } else { goto exp; } return s; exp: if (digs > 1) { memmove(buf + 2, buf + 1, digs - 1); } else { buf[2] = '0'; digs++; } buf[1] = '.'; rb_str_cat(s, buf, digs + 1); rb_str_catf(s, "e%+03d", decpt - 1); return s; }
Returns a string containing a representation of self
. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
static VALUE flo_truncate(int argc, VALUE *argv, VALUE num) { if (signbit(RFLOAT_VALUE(num))) return flo_ceil(argc, argv, num); else return flo_floor(argc, argv, num); }
Returns float
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
2.8.truncate #=> 2 (-2.8).truncate #=> -2 1.234567.truncate(2) #=> 1.23 34567.89.truncate(-2) #=> 34500
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).truncate #=> 2 (!)
static VALUE flo_zero_p(VALUE num) { return flo_iszero(num) ? Qtrue : Qfalse; }
Returns true
if float
is 0.0.
Ruby Core © 1993–2020 Yukihiro Matsumoto
Licensed under the Ruby License.
Ruby Standard Library © contributors
Licensed under their own licenses.