Holds Integer
values. You cannot add a singleton method to an Integer
object, any attempt to do so will raise a TypeError
.
The version of loaded GMP.
# File lib/prime.rb, line 22 def Integer.from_prime_division(pd) Prime.int_from_prime_division(pd) end
Re-composes a prime factorization and returns the product.
See Prime#int_from_prime_division
for more details.
static VALUE rb_int_s_isqrt(VALUE self, VALUE num) { unsigned long n, sq; num = rb_to_int(num); if (FIXNUM_P(num)) { if (FIXNUM_NEGATIVE_P(num)) { domain_error("isqrt"); } n = FIX2ULONG(num); sq = rb_ulong_isqrt(n); return LONG2FIX(sq); } else { size_t biglen; if (RBIGNUM_NEGATIVE_P(num)) { domain_error("isqrt"); } biglen = BIGNUM_LEN(num); if (biglen == 0) return INT2FIX(0); #if SIZEOF_BDIGIT <= SIZEOF_LONG /* short-circuit */ if (biglen == 1) { n = BIGNUM_DIGITS(num)[0]; sq = rb_ulong_isqrt(n); return ULONG2NUM(sq); } #endif return rb_big_isqrt(num); } }
Returns the integer square root of the non-negative integer n
, i.e. the largest non-negative integer less than or equal to the square root of n
.
Integer.sqrt(0) #=> 0 Integer.sqrt(1) #=> 1 Integer.sqrt(24) #=> 4 Integer.sqrt(25) #=> 5 Integer.sqrt(10**400) #=> 10**200
Equivalent to Math.sqrt(n).floor
, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46) #=> 100000000000000000000000 Math.sqrt(10**46).floor #=> 99999999999999991611392 (!)
If n
is not an Integer
, it is converted to an Integer
first. If n
is negative, a Math::DomainError
is raised.
VALUE rb_int_modulo(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_mod(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_modulo(x, y); } return num_modulo(x, y); }
Returns int
modulo other
.
See Numeric#divmod
for more information.
VALUE rb_int_pow(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_pow(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_pow(x, y); } return Qnil; }
Raises int
to the power of numeric
, which may be negative or fractional. The result may be an Integer
, a Float
, a Rational
, or a complex number.
2 ** 3 #=> 8 2 ** -1 #=> (1/2) 2 ** 0.5 #=> 1.4142135623730951 (-1) ** 0.5 #=> (0.0+1.0i) 123456789 ** 2 #=> 15241578750190521 123456789 ** 1.2 #=> 5126464716.0993185 123456789 ** -2 #=> (1/15241578750190521)
VALUE rb_int_cmp(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_cmp(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_cmp(x, y); } else { rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x)); } }
Comparison—Returns -1, 0, or +1 depending on whether int
is less than, equal to, or greater than numeric
.
This is the basis for the tests in the Comparable
module.
nil
is returned if the two values are incomparable.
Returns true
if int
equals other
numerically. Contrast this with Integer#eql?
, which requires other
to be an Integer
.
1 == 2 #=> false 1 == 1.0 #=> true
VALUE rb_int_equal(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_equal(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_eq(x, y); } return Qnil; }
Returns true
if int
equals other
numerically. Contrast this with Integer#eql?
, which requires other
to be an Integer
.
1 == 2 #=> false 1 == 1.0 #=> true
static VALUE int_aref(int const argc, VALUE * const argv, VALUE const num) { rb_check_arity(argc, 1, 2); if (argc == 2) { return int_aref2(num, argv[0], argv[1]); } return int_aref1(num, argv[0]); return Qnil; }
Bit Reference—Returns the n
th bit in the binary representation of int
, where int[0]
is the least significant bit.
a = 0b11001100101010 30.downto(0) {|n| print a[n] } #=> 0000000000000000011001100101010 a = 9**15 50.downto(0) {|n| print a[n] } #=> 000101110110100000111000011110010100111100010111001
In principle, n[i]
is equivalent to (n >> i) & 1
. Thus, any negative index always returns zero:
p 255[-1] #=> 0
Range
operations n[i, len]
and n[i..j]
are naturally extended.
n[i, len]
equals to (n >> i) & ((1 << len) - 1)
.
n[i..j]
equals to (n >> i) & ((1 << (j - i + 1)) - 1)
.
n[i...j]
equals to (n >> i) & ((1 << (j - i)) - 1)
.
n[i..]
equals to (n >> i)
.
n[..j]
is zero if n & ((1 << (j + 1)) - 1)
is zero. Otherwise, raises an ArgumentError
.
n[...j]
is zero if n & ((1 << j) - 1)
is zero. Otherwise, raises an ArgumentError
.
Note that range operation may exhaust memory. For example, -1[0, 1000000000000]
will raise NoMemoryError
.
# File integer.rb, line 73 def bit_length Primitive.attr! 'inline' Primitive.cexpr! 'rb_int_bit_length(self)' end
Returns the number of bits of the value of int
.
“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.
I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**1000-1).bit_length #=> 1001 (-2**1000).bit_length #=> 1000 (-2**1000+1).bit_length #=> 1000 (-2**12-1).bit_length #=> 13 (-2**12).bit_length #=> 12 (-2**12+1).bit_length #=> 12 -0x101.bit_length #=> 9 -0x100.bit_length #=> 8 -0xff.bit_length #=> 8 -2.bit_length #=> 1 -1.bit_length #=> 0 0.bit_length #=> 0 1.bit_length #=> 1 0xff.bit_length #=> 8 0x100.bit_length #=> 9 (2**12-1).bit_length #=> 12 (2**12).bit_length #=> 13 (2**12+1).bit_length #=> 13 (2**1000-1).bit_length #=> 1000 (2**1000).bit_length #=> 1001 (2**1000+1).bit_length #=> 1001
This method can be used to detect overflow in Array#pack
as follows:
if n.bit_length < 32 [n].pack("l") # no overflow else raise "overflow" end
static VALUE int_ceil(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_ceil(num, ndigits); }
Returns the smallest number greater than or equal to int
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.ceil #=> 1 1.ceil(2) #=> 1 18.ceil(-1) #=> 20 (-18).ceil(-1) #=> -10
static VALUE int_chr(int argc, VALUE *argv, VALUE num) { char c; unsigned int i; rb_encoding *enc; if (rb_num_to_uint(num, &i) == 0) { } else if (FIXNUM_P(num)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } switch (argc) { case 0: if (0xff < i) { enc = rb_default_internal_encoding(); if (!enc) { rb_raise(rb_eRangeError, "%u out of char range", i); } goto decode; } c = (char)i; if (i < 0x80) { return rb_usascii_str_new(&c, 1); } else { return rb_str_new(&c, 1); } case 1: break; default: rb_error_arity(argc, 0, 1); } enc = rb_to_encoding(argv[0]); if (!enc) enc = rb_ascii8bit_encoding(); decode: return rb_enc_uint_chr(i, enc); }
Returns a string containing the character represented by the int
's value according to encoding
.
65.chr #=> "A" 230.chr #=> "\xE6" 255.chr(Encoding::UTF_8) #=> "\u00FF"
static VALUE rb_int_coerce(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(y)) { return rb_assoc_new(y, x); } else { x = rb_Float(x); y = rb_Float(y); return rb_assoc_new(y, x); } }
Returns an array with both a numeric
and a big
represented as Bignum objects.
This is achieved by converting numeric
to a Bignum.
A TypeError
is raised if the numeric
is not a Fixnum or Bignum type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
static VALUE rb_int_digits(int argc, VALUE *argv, VALUE num) { VALUE base_value; long base; if (rb_num_negative_p(num)) rb_raise(rb_eMathDomainError, "out of domain"); if (rb_check_arity(argc, 0, 1)) { base_value = rb_to_int(argv[0]); if (!RB_INTEGER_TYPE_P(base_value)) rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)", rb_obj_classname(argv[0])); if (RB_TYPE_P(base_value, T_BIGNUM)) return rb_int_digits_bigbase(num, base_value); base = FIX2LONG(base_value); if (base < 0) rb_raise(rb_eArgError, "negative radix"); else if (base < 2) rb_raise(rb_eArgError, "invalid radix %ld", base); } else base = 10; if (FIXNUM_P(num)) return rb_fix_digits(num, base); else if (RB_TYPE_P(num, T_BIGNUM)) return rb_int_digits_bigbase(num, LONG2FIX(base)); return Qnil; }
Returns the digits of int
's place-value representation with radix base
(default: 10). The digits are returned as an array with the least significant digit as the first array element.
base
must be greater than or equal to 2.
12345.digits #=> [5, 4, 3, 2, 1] 12345.digits(7) #=> [4, 6, 6, 0, 5] 12345.digits(100) #=> [45, 23, 1] -12345.digits(7) #=> Math::DomainError
VALUE rb_int_divmod(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return fix_divmod(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_divmod(x, y); } return Qnil; }
See Numeric#divmod
.
static VALUE int_downto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i=FIX2LONG(from); i >= end; i--) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '<', 1, to))) { rb_yield(i); i = rb_funcall(i, '-', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; }
Iterates the given block, passing in decreasing values from int
down to and including limit
.
If no block is given, an Enumerator
is returned instead.
5.downto(1) { |n| print n, ".. " } puts "Liftoff!" #=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
VALUE rb_int_fdiv(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(x)) { return DBL2NUM(rb_int_fdiv_double(x, y)); } return Qnil; }
Returns the floating point result of dividing int
by numeric
.
654321.fdiv(13731) #=> 47.652829364212366 654321.fdiv(13731.24) #=> 47.65199646936475 -654321.fdiv(13731) #=> -47.652829364212366
static VALUE int_floor(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_floor(num, ndigits); }
Returns the largest number less than or equal to int
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.floor #=> 1 1.floor(2) #=> 1 18.floor(-1) #=> 10 (-18).floor(-1) #=> -20
VALUE rb_gcd(VALUE self, VALUE other) { other = nurat_int_value(other); return f_gcd(self, other); }
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60) #=> 12 2.gcd(2) #=> 2 3.gcd(-7) #=> 1 ((1<<31)-1).gcd((1<<61)-1) #=> 1
VALUE rb_gcdlcm(VALUE self, VALUE other) { other = nurat_int_value(other); return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); }
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60) #=> [12, 180] 2.gcdlcm(2) #=> [2, 2] 3.gcdlcm(-7) #=> [1, 21] ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
Returns a string containing the place-value representation of int
with radix base
(between 2 and 36).
12345.to_s #=> "12345" 12345.to_s(2) #=> "11000000111001" 12345.to_s(8) #=> "30071" 12345.to_s(10) #=> "12345" 12345.to_s(16) #=> "3039" 12345.to_s(36) #=> "9ix" 78546939656932.to_s(36) #=> "rubyrules"
Since int
is already an Integer
, this always returns true
.
VALUE rb_lcm(VALUE self, VALUE other) { other = nurat_int_value(other); return f_lcm(self, other); }
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60) #=> 180 2.lcm(2) #=> 2 3.lcm(-7) #=> 21 ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
Returns int
modulo other
.
See Numeric#divmod
for more information.
Returns the successor of int
, i.e. the Integer
equal to int+1
.
1.next #=> 2 (-1).next #=> 0 1.succ #=> 2 (-1).succ #=> 0
VALUE rb_int_powm(int const argc, VALUE * const argv, VALUE const num) { rb_check_arity(argc, 1, 2); if (argc == 1) { return rb_int_pow(num, argv[0]); } else { VALUE const a = num; VALUE const b = argv[0]; VALUE m = argv[1]; int nega_flg = 0; if ( ! RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer"); } if (rb_int_negative_p(b)) { rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified"); } if (!RB_INTEGER_TYPE_P(m)) { rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers"); } if (rb_int_negative_p(m)) { m = rb_int_uminus(m); nega_flg = 1; } if (FIXNUM_P(m)) { long const half_val = (long)HALF_LONG_MSB; long const mm = FIX2LONG(m); if (!mm) rb_num_zerodiv(); if (mm == 1) return INT2FIX(0); if (mm <= half_val) { return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg); } else { return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg); } } else { if (rb_bigzero_p(m)) rb_num_zerodiv(); if (bignorm(m) == INT2FIX(1)) return INT2FIX(0); return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg); } } UNREACHABLE_RETURN(Qnil); }
Returns (modular) exponentiation as:
a.pow(b) #=> same as a**b a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
static VALUE rb_int_pred(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) - 1; return LONG2NUM(i); } if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_minus(num, INT2FIX(1)); } return num_funcall1(num, '-', INT2FIX(1)); }
Returns the predecessor of int
, i.e. the Integer
equal to int-1
.
1.pred #=> 0 (-1).pred #=> -2
# File lib/prime.rb, line 35 def prime? return self >= 2 if self <= 3 if (bases = miller_rabin_bases) return miller_rabin_test(bases) end return true if self == 5 return false unless 30.gcd(self) == 1 (7..Integer.sqrt(self)).step(30) do |p| return false if self%(p) == 0 || self%(p+4) == 0 || self%(p+6) == 0 || self%(p+10) == 0 || self%(p+12) == 0 || self%(p+16) == 0 || self%(p+22) == 0 || self%(p+24) == 0 end true end
Returns true if self
is a prime number, else returns false. Not recommended for very big integers (> 10**23).
# File lib/prime.rb, line 29 def prime_division(generator = Prime::Generator23.new) Prime.prime_division(self, generator) end
Returns the factorization of self
.
See Prime#prime_division
for more details.
static VALUE int_remainder(VALUE x, VALUE y) { if (FIXNUM_P(x)) { return num_remainder(x, y); } else if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_remainder(x, y); } return Qnil; }
Returns the remainder after dividing int
by numeric
.
x.remainder(y)
means x-y*(x/y).truncate
.
5.remainder(3) #=> 2 -5.remainder(3) #=> -2 5.remainder(-3) #=> 2 -5.remainder(-3) #=> -2 5.remainder(1.5) #=> 0.5
See Numeric#divmod
.
static VALUE int_round(int argc, VALUE* argv, VALUE num) { int ndigits; int mode; VALUE nd, opt; if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num; ndigits = NUM2INT(nd); mode = rb_num_get_rounding_option(opt); if (ndigits >= 0) { return num; } return rb_int_round(num, ndigits, mode); }
Returns int
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.round #=> 1 1.round(2) #=> 1 15.round(-1) #=> 20 (-15).round(-1) #=> -20
The optional half
keyword argument is available similar to Float#round
.
25.round(-1, half: :up) #=> 30 25.round(-1, half: :down) #=> 20 25.round(-1, half: :even) #=> 20 35.round(-1, half: :up) #=> 40 35.round(-1, half: :down) #=> 30 35.round(-1, half: :even) #=> 40 (-25).round(-1, half: :up) #=> -30 (-25).round(-1, half: :down) #=> -20 (-25).round(-1, half: :even) #=> -20
static VALUE int_size(VALUE num) { if (FIXNUM_P(num)) { return fix_size(num); } else if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_size_m(num); } return Qnil; }
Returns the number of bytes in the machine representation of int
(machine dependent).
1.size #=> 8 -1.size #=> 8 2147483647.size #=> 8 (256**10 - 1).size #=> 10 (256**20 - 1).size #=> 20 (256**40 - 1).size #=> 40
VALUE rb_int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_plus(num, INT2FIX(1)); } return num_funcall1(num, '+', INT2FIX(1)); }
Returns the successor of int
, i.e. the Integer
equal to int+1
.
1.next #=> 2 (-1).next #=> 0 1.succ #=> 2 (-1).succ #=> 0
static VALUE int_dotimes(VALUE num) { RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); if (FIXNUM_P(num)) { long i, end; end = FIX2LONG(num); for (i=0; i<end; i++) { rb_yield_1(LONG2FIX(i)); } } else { VALUE i = INT2FIX(0); for (;;) { if (!RTEST(rb_funcall(i, '<', 1, num))) break; rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } } return num; }
Iterates the given block int
times, passing in values from zero to int - 1
.
If no block is given, an Enumerator
is returned instead.
5.times {|i| print i, " " } #=> 0 1 2 3 4
Casts an Integer
as an OpenSSL::BN
See `man bn` for more info.
Returns the value of int
as a BigDecimal
.
require 'bigdecimal' require 'bigdecimal/util' 42.to_d # => 0.42e2
See also BigDecimal::new
.
static VALUE int_to_f(VALUE num) { double val; if (FIXNUM_P(num)) { val = (double)FIX2LONG(num); } else if (RB_TYPE_P(num, T_BIGNUM)) { val = rb_big2dbl(num); } else { rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num)); } return DBL2NUM(val); }
Converts int
to a Float
. If int
doesn't fit in a Float
, the result is infinity.
Since int
is already an Integer
, returns self
.
static VALUE int_to_s(int argc, VALUE *argv, VALUE x) { int base; if (rb_check_arity(argc, 0, 1)) base = NUM2INT(argv[0]); else base = 10; return rb_int2str(x, base); }
Returns a string containing the place-value representation of int
with radix base
(between 2 and 36).
12345.to_s #=> "12345" 12345.to_s(2) #=> "11000000111001" 12345.to_s(8) #=> "30071" 12345.to_s(10) #=> "12345" 12345.to_s(16) #=> "3039" 12345.to_s(36) #=> "9ix" 78546939656932.to_s(36) #=> "rubyrules"
static VALUE int_truncate(int argc, VALUE* argv, VALUE num) { int ndigits; if (!rb_check_arity(argc, 0, 1)) return num; ndigits = NUM2INT(argv[0]); if (ndigits >= 0) { return num; } return rb_int_truncate(num, ndigits); }
Returns int
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns self
when ndigits
is zero or positive.
1.truncate #=> 1 1.truncate(2) #=> 1 18.truncate(-1) #=> 10 (-18).truncate(-1) #=> -10
static VALUE int_upto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i = FIX2LONG(from); i <= end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '>', 1, to))) { rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } ensure_cmp(c, i, to); } return from; }
Iterates the given block, passing in integer values from int
up to and including limit
.
If no block is given, an Enumerator
is returned instead.
5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10
One's complement: returns a number where each bit is flipped.
Inverts the bits in an Integer
. As integers are conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
# File lib/prime.rb, line 69 def miller_rabin_bases # Miller-Rabin's complexity is O(k log^3n). # So we can reduce the complexity by reducing the number of bases tested. # Using values from https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test i = case when self < 0xffff then # For small integers, Miller Rabin can be slower # There is no mathematical significance to 0xffff return nil # when self < 2_047 then 0 when self < 1_373_653 then 1 when self < 9_080_191 then 2 when self < 25_326_001 then 3 when self < 3_215_031_751 then 4 when self < 4_759_123_141 then 5 when self < 1_122_004_669_633 then 6 when self < 2_152_302_898_747 then 7 when self < 3_474_749_660_383 then 8 when self < 341_550_071_728_321 then 9 when self < 3_825_123_056_546_413_051 then 10 when self < 318_665_857_834_031_151_167_461 then 11 when self < 3_317_044_064_679_887_385_961_981 then 12 else return nil end MILLER_RABIN_BASES[i] end
# File lib/prime.rb, line 96 def miller_rabin_test(bases) return false if even? r = 0 d = self >> 1 while d.even? d >>= 1 r += 1 end self_minus_1 = self-1 bases.each do |a| x = a.pow(d, self) next if x == 1 || x == self_minus_1 || a == self return false if r.times do x = x.pow(2, self) break if x == self_minus_1 end end true end
Ruby Core © 1993–2020 Yukihiro Matsumoto
Licensed under the Ruby License.
Ruby Standard Library © contributors
Licensed under their own licenses.