W3cubDocs

/Rust

Struct std::fs::OpenOptions

pub struct OpenOptions(_);

Options and flags which can be used to configure how a file is opened.

This builder exposes the ability to configure how a File is opened and what operations are permitted on the open file. The File::open and File::create methods are aliases for commonly used options using this builder.

Generally speaking, when using OpenOptions, you'll first call OpenOptions::new, then chain calls to methods to set each option, then call OpenOptions::open, passing the path of the file you're trying to open. This will give you a io::Result with a File inside that you can further operate on.

Examples

Opening a file to read:

use std::fs::OpenOptions;

let file = OpenOptions::new().read(true).open("foo.txt");

Opening a file for both reading and writing, as well as creating it if it doesn't exist:

use std::fs::OpenOptions;

let file = OpenOptions::new()
            .read(true)
            .write(true)
            .create(true)
            .open("foo.txt");

Implementations

impl OpenOptions[src]

pub fn new() -> Self[src]

Creates a blank new set of options ready for configuration.

All options are initially set to false.

Examples

use std::fs::OpenOptions;

let mut options = OpenOptions::new();
let file = options.read(true).open("foo.txt");

pub fn read(&mut self, read: bool) -> &mut Self

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]

Sets the option for read access.

This option, when true, will indicate that the file should be read-able if opened.

Examples

use std::fs::OpenOptions;

let file = OpenOptions::new().read(true).open("foo.txt");

pub fn write(&mut self, write: bool) -> &mut Self

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]

Sets the option for write access.

This option, when true, will indicate that the file should be write-able if opened.

If the file already exists, any write calls on it will overwrite its contents, without truncating it.

Examples

use std::fs::OpenOptions;

let file = OpenOptions::new().write(true).open("foo.txt");

pub fn append(&mut self, append: bool) -> &mut Self

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]

Sets the option for the append mode.

This option, when true, means that writes will append to a file instead of overwriting previous contents. Note that setting .write(true).append(true) has the same effect as setting only .append(true).

For most filesystems, the operating system guarantees that all writes are atomic: no writes get mangled because another process writes at the same time.

One maybe obvious note when using append-mode: make sure that all data that belongs together is written to the file in one operation. This can be done by concatenating strings before passing them to write(), or using a buffered writer (with a buffer of adequate size), and calling flush() when the message is complete.

If a file is opened with both read and append access, beware that after opening, and after every write, the position for reading may be set at the end of the file. So, before writing, save the current position (using seek(SeekFrom::Current(0))), and restore it before the next read.

Note

This function doesn't create the file if it doesn't exist. Use the OpenOptions::create method to do so.

Examples

use std::fs::OpenOptions;

let file = OpenOptions::new().append(true).open("foo.txt");

pub fn truncate(&mut self, truncate: bool) -> &mut Self

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]

Sets the option for truncating a previous file.

If a file is successfully opened with this option set it will truncate the file to 0 length if it already exists.

The file must be opened with write access for truncate to work.

Examples

use std::fs::OpenOptions;

let file = OpenOptions::new().write(true).truncate(true).open("foo.txt");

pub fn create(&mut self, create: bool) -> &mut Self

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]

Sets the option to create a new file, or open it if it already exists.

In order for the file to be created, OpenOptions::write or OpenOptions::append access must be used.

Examples

use std::fs::OpenOptions;

let file = OpenOptions::new().write(true).create(true).open("foo.txt");

pub fn create_new(&mut self, create_new: bool) -> &mut Self

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]1.9.0

Sets the option to create a new file, failing if it already exists.

No file is allowed to exist at the target location, also no (dangling) symlink. In this way, if the call succeeds, the file returned is guaranteed to be new.

This option is useful because it is atomic. Otherwise between checking whether a file exists and creating a new one, the file may have been created by another process (a TOCTOU race condition / attack).

If .create_new(true) is set, .create() and .truncate() are ignored.

The file must be opened with write or append access in order to create a new file.

Examples

use std::fs::OpenOptions;

let file = OpenOptions::new().write(true)
                             .create_new(true)
                             .open("foo.txt");

pub fn open<P: AsRef<Path>>(&self, path: P) -> Result<File>[src]

Opens a file at path with the options specified by self.

Errors

This function will return an error under a number of different circumstances. Some of these error conditions are listed here, together with their io::ErrorKind. The mapping to io::ErrorKinds is not part of the compatibility contract of the function, especially the Other kind might change to more specific kinds in the future.

  • NotFound: The specified file does not exist and neither create or create_new is set.
  • NotFound: One of the directory components of the file path does not exist.
  • PermissionDenied: The user lacks permission to get the specified access rights for the file.
  • PermissionDenied: The user lacks permission to open one of the directory components of the specified path.
  • AlreadyExists: create_new was specified and the file already exists.
  • InvalidInput: Invalid combinations of open options (truncate without write access, no access mode set, etc.).
  • Other: One of the directory components of the specified file path was not, in fact, a directory.
  • Other: Filesystem-level errors: full disk, write permission requested on a read-only file system, exceeded disk quota, too many open files, too long filename, too many symbolic links in the specified path (Unix-like systems only), etc.

Examples

use std::fs::OpenOptions;

let file = OpenOptions::new().read(true).open("foo.txt");

Trait Implementations

impl Clone for OpenOptions[src]

impl Debug for OpenOptions[src]

impl OpenOptionsExt for OpenOptions[src]1.1.0

impl OpenOptionsExt for OpenOptions[src]1.10.0

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/fs/struct.OpenOptions.html