sklearn.datasets.make_gaussian_quantiles
  - 
sklearn.datasets.make_gaussian_quantiles(mean=None, cov=1.0, n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None) [source]
  - 
Generate isotropic Gaussian and label samples by quantile
 This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the \(\chi^2\) distribution).
 Read more in the User Guide.
     
| Parameters: | 
 - 
mean : array of shape [n_features], optional (default=None)   - 
The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, …).    - 
cov : float, optional (default=1.)   - 
The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions.    - 
n_samples : int, optional (default=100)   - 
The total number of points equally divided among classes.    - 
n_features : int, optional (default=2)   - 
The number of features for each sample.    - 
n_classes : int, optional (default=3)   - 
The number of classes    - 
shuffle : boolean, optional (default=True)   - 
Shuffle the samples.    - 
random_state : int, RandomState instance or None (default)   - 
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.       |  
 
| Returns: | 
 - 
X : array of shape [n_samples, n_features]   - 
The generated samples.    - 
y : array of shape [n_samples]   - 
The integer labels for quantile membership of each sample.       |  
  
 Notes
 The dataset is from Zhu et al [1].
 References
    
| [1] | 
 - Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.
     | 
  
  
  Examples using sklearn.datasets.make_gaussian_quantiles