View source on GitHub |
Draws shape
samples from each of the given Poisson distribution(s).
tf.random.poisson( shape, lam, dtype=tf.dtypes.float32, seed=None, name=None )
lam
is the rate parameter describing the distribution(s).
samples = tf.random.poisson([10], [0.5, 1.5]) # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents # the samples drawn from each distribution samples = tf.random.poisson([7, 5], [12.2, 3.3]) # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1] # represents the 7x5 samples drawn from each of the two distributions
Args | |
---|---|
shape | A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per "rate"-parameterized distribution. |
lam | A Tensor or Python value or N-D array of type dtype . lam provides the rate parameter(s) describing the poisson distribution(s) to sample. |
dtype | The type of the output: float16 , float32 , float64 , int32 or int64 . |
seed | A Python integer. Used to create a random seed for the distributions. See tf.random.set_seed for behavior. |
name | Optional name for the operation. |
Returns | |
---|---|
samples | a Tensor of shape tf.concat([shape, tf.shape(lam)], axis=0) with values of type dtype . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/random/poisson