Experimental API for building input pipelines.
This module contains experimental Dataset
sources and transformations that can be used in conjunction with the tf.data.Dataset
API. Note that the tf.data.experimental
API is not subject to the same backwards compatibility guarantees as tf.data
, but we will provide deprecation advice in advance of removing existing functionality.
See Importing Data for an overview.
service
module: API for using the tf.data service.
class AutoShardPolicy
: Represents the type of auto-sharding we enable.
class CheckpointInputPipelineHook
: Checkpoints input pipeline state every N steps or seconds.
class CsvDataset
: A Dataset comprising lines from one or more CSV files.
class DistributeOptions
: Represents options for distributed data processing.
class MapVectorizationOptions
: Represents options for the MapVectorization optimization.
class OptimizationOptions
: Represents options for dataset optimizations.
class Optional
: Represents a value that may or may not be present.
class RandomDataset
: A Dataset
of pseudorandom values.
class Reducer
: A reducer is used for reducing a set of elements.
class SqlDataset
: A Dataset
consisting of the results from a SQL query.
class StatsAggregator
: A stateful resource that aggregates statistics from one or more iterators.
class StatsOptions
: Represents options for collecting dataset stats using StatsAggregator
.
class TFRecordWriter
: Writes a dataset to a TFRecord file.
class ThreadingOptions
: Represents options for dataset threading.
Counter(...)
: Creates a Dataset
that counts from start
in steps of size step
.
assert_cardinality(...)
: Asserts the cardinality of the input dataset.
bucket_by_sequence_length(...)
: A transformation that buckets elements in a Dataset
by length.
bytes_produced_stats(...)
: Records the number of bytes produced by each element of the input dataset.
cardinality(...)
: Returns the cardinality of dataset
, if known.
choose_from_datasets(...)
: Creates a dataset that deterministically chooses elements from datasets
.
copy_to_device(...)
: A transformation that copies dataset elements to the given target_device
.
dense_to_ragged_batch(...)
: A transformation that batches ragged elements into tf.RaggedTensor
s.
dense_to_sparse_batch(...)
: A transformation that batches ragged elements into tf.sparse.SparseTensor
s.
enumerate_dataset(...)
: A transformation that enumerates the elements of a dataset. (deprecated)
from_variant(...)
: Constructs a dataset from the given variant and structure.
get_next_as_optional(...)
: Returns a tf.experimental.Optional
with the next element of the iterator. (deprecated)
get_single_element(...)
: Returns the single element in dataset
as a nested structure of tensors.
get_structure(...)
: Returns the type signature for elements of the input dataset / iterator.
group_by_reducer(...)
: A transformation that groups elements and performs a reduction.
group_by_window(...)
: A transformation that groups windows of elements by key and reduces them.
ignore_errors(...)
: Creates a Dataset
from another Dataset
and silently ignores any errors.
latency_stats(...)
: Records the latency of producing each element of the input dataset.
load(...)
: Loads a previously saved dataset.
make_batched_features_dataset(...)
: Returns a Dataset
of feature dictionaries from Example
protos.
make_csv_dataset(...)
: Reads CSV files into a dataset.
make_saveable_from_iterator(...)
: Returns a SaveableObject for saving/restoring iterator state using Saver. (deprecated)
map_and_batch(...)
: Fused implementation of map
and batch
. (deprecated)
parallel_interleave(...)
: A parallel version of the Dataset.interleave()
transformation. (deprecated)
parse_example_dataset(...)
: A transformation that parses Example
protos into a dict
of tensors.
prefetch_to_device(...)
: A transformation that prefetches dataset values to the given device
.
rejection_resample(...)
: A transformation that resamples a dataset to achieve a target distribution.
sample_from_datasets(...)
: Samples elements at random from the datasets in datasets
.
save(...)
: Saves the content of the given dataset.
scan(...)
: A transformation that scans a function across an input dataset.
shuffle_and_repeat(...)
: Shuffles and repeats a Dataset, reshuffling with each repetition. (deprecated)
snapshot(...)
: API to persist the output of the input dataset.
take_while(...)
: A transformation that stops dataset iteration based on a predicate
.
to_variant(...)
: Returns a variant representing the given dataset.
unbatch(...)
: Splits elements of a dataset into multiple elements on the batch dimension. (deprecated)
unique(...)
: Creates a Dataset
from another Dataset
, discarding duplicates.
Other Members | |
---|---|
AUTOTUNE | -1 |
INFINITE_CARDINALITY | -1 |
UNKNOWN_CARDINALITY | -2 |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/data/experimental