/TensorFlow 2.4


Generates hashed feature cross from a list of tensors.

The input tensors must have rank=2, and must all have the same number of rows. The result is a RaggedTensor with the same number of rows as the inputs, where result[row] contains a list of all combinations of values formed by taking a single value from each input's corresponding row (inputs[i][row]). Values are combined by hashing together their fingerprints. E.g.:

tf.ragged.cross_hashed([tf.ragged.constant([['a'], ['b', 'c']]),
                        tf.ragged.constant([['d'], ['e']]),
                        tf.ragged.constant([['f'], ['g']])],
<tf.RaggedTensor [[78], [66, 74]]>
inputs A list of RaggedTensor or Tensor or SparseTensor.
num_buckets A non-negative int that used to bucket the hashed values. If num_buckets != 0, then output = hashed_value % num_buckets.
hash_key Integer hash_key that will be used by the FingerprintCat64 function. If not given, a default key is used.
name Optional name for the op.
A 2D RaggedTensor of type int64.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.