W3cubDocs

/TensorFlow 2.4

tf.ragged.cross_hashed

Generates hashed feature cross from a list of tensors.

The input tensors must have rank=2, and must all have the same number of rows. The result is a RaggedTensor with the same number of rows as the inputs, where result[row] contains a list of all combinations of values formed by taking a single value from each input's corresponding row (inputs[i][row]). Values are combined by hashing together their fingerprints. E.g.:

tf.ragged.cross_hashed([tf.ragged.constant([['a'], ['b', 'c']]),
                        tf.ragged.constant([['d'], ['e']]),
                        tf.ragged.constant([['f'], ['g']])],
                       num_buckets=100)
<tf.RaggedTensor [[78], [66, 74]]>
Args
inputs A list of RaggedTensor or Tensor or SparseTensor.
num_buckets A non-negative int that used to bucket the hashed values. If num_buckets != 0, then output = hashed_value % num_buckets.
hash_key Integer hash_key that will be used by the FingerprintCat64 function. If not given, a default key is used.
name Optional name for the op.
Returns
A 2D RaggedTensor of type int64.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/ragged/cross_hashed