tf.contrib.estimator.add_metrics( estimator, metric_fn )
Defined in tensorflow/contrib/estimator/python/estimator/extenders.py
.
Creates a new tf.estimator.Estimator
which has given metrics.
Example:
def my_auc(labels, predictions): return {'auc': tf.metrics.auc(labels, predictions['logistic'])} estimator = tf.estimator.DNNClassifier(...) estimator = tf.contrib.estimator.add_metrics(estimator, my_auc) estimator.train(...) estimator.evaluate(...)
Example usage of custom metric which uses features:
def my_auc(features, labels, predictions): return {'auc': tf.metrics.auc( labels, predictions['logistic'], weights=features['weight'])} estimator = tf.estimator.DNNClassifier(...) estimator = tf.contrib.estimator.add_metrics(estimator, my_auc) estimator.train(...) estimator.evaluate(...)
estimator
: A tf.estimator.Estimator
object.metric_fn
: A function which should obey the following signature:Tensor
or dict of Tensor
created by given estimator
.dict
of Tensor
objects created by input_fn
which is given to estimator.evaluate
as an argument.Tensor
or dict of Tensor
created by input_fn
which is given to estimator.evaluate
as an argument.estimator
.estimator's
existing metrics. If there is a name conflict between this and estimator
s existing metrics, this will override the existing one. The values of the dict are the results of calling a metric function, namely a (metric_tensor, update_op)
tuple.A new tf.estimator.Estimator
which has a union of original metrics with given ones.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator/add_metrics