LinearEstimator
Inherits From: Estimator
Defined in tensorflow/contrib/learn/python/learn/estimators/linear.py
.
Linear model with user specified head.
THIS CLASS IS DEPRECATED. See contrib/learn/README.md for general migration instructions.
Train a generalized linear model to predict label value given observation of feature values.
Example: To do poisson regression,
sparse_column_a = sparse_column_with_hash_bucket(...) sparse_column_b = sparse_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) estimator = LinearEstimator( feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b], head=head_lib.poisson_regression_head()) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x)
Input of fit
and evaluate
should have following features, otherwise there will be a KeyError:
weight_column_name
is not None
: key=weight_column_name, value=a Tensor
feature_columns
:SparseColumn
): key=column.name, value=a SparseTensor
WeightedSparseColumn
): {key=id column name, value=a SparseTensor
, key=weight column name, value=a SparseTensor
}RealValuedColumn
): key=column.name, value=a Tensor
config
model_dir
Returns a path in which the eval process will look for checkpoints.
model_fn
Returns the model_fn which is bound to self.params.
The model_fn with the following signature: def model_fn(features, labels, mode, metrics)
__init__
__init__( feature_columns, head, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, _joint_weights=False, config=None, feature_engineering_fn=None )
Construct a LinearEstimator
object.
feature_columns
: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from FeatureColumn
.head
: An instance of _Head class.model_dir
: Directory to save model parameters, graph, etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model.weight_column_name
: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example.optimizer
: An instance of tf.Optimizer
used to train the model. If None
, will use an Ftrl optimizer.gradient_clip_norm
: A float
> 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm
for more details._joint_weights
: If True use a single (possibly partitioned) variable to store the weights. It's faster, but requires all feature columns are sparse and have the 'sum' combiner. Incompatible with SDCAOptimizer.config
: RunConfig
object to configure the runtime settings.feature_engineering_fn
: Feature engineering function. Takes features and labels which are the output of input_fn
and returns features and labels which will be fed into the model.A LinearEstimator
estimator.
ValueError
: if optimizer is not supported, e.g., SDCAOptimizerevaluate
evaluate( x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True )
See Evaluable
. (deprecated arguments)
SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-12-01. Instructions for updating: Estimator is decoupled from Scikit Learn interface by moving into separate class SKCompat. Arguments x, y and batch_size are only available in the SKCompat class, Estimator will only accept input_fn. Example conversion: est = Estimator(...) -> est = SKCompat(Estimator(...))
ValueError
: If at least one of x
or y
is provided, and at least one of input_fn
or feed_fn
is provided. Or if metrics
is not None
or dict
.export
export( export_dir, input_fn=export._default_input_fn, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None, checkpoint_path=None )
Exports inference graph into given dir. (deprecated)
THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25. Instructions for updating: Please use Estimator.export_savedmodel() instead.
export_dir
: A string containing a directory to write the exported graph and checkpoints.input_fn
: If use_deprecated_input_fn
is true, then a function that given Tensor
of Example
strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to Tensor
and labels is a Tensor
that's currently not used (and so can be None
).input_feature_key
: Only used if use_deprecated_input_fn
is false. String key into the features dict returned by input_fn
that corresponds to a the raw Example
strings Tensor
that the exported model will take as input. Can only be None
if you're using a custom signature_fn
that does not use the first arg (examples).use_deprecated_input_fn
: Determines the signature format of input_fn
.signature_fn
: Function that returns a default signature and a named signature map, given Tensor
of Example
strings, dict
of Tensor
s for features and Tensor
or dict
of Tensor
s for predictions.prediction_key
: The key for a tensor in the predictions
dict (output from the model_fn
) to use as the predictions
input to the signature_fn
. Optional. If None
, predictions will pass to signature_fn
without filtering.default_batch_size
: Default batch size of the Example
placeholder.exports_to_keep
: Number of exports to keep.checkpoint_path
: the checkpoint path of the model to be exported. If it is None
(which is default), will use the latest checkpoint in export_dir.The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value.
export_savedmodel
export_savedmodel( export_dir_base, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None, graph_rewrite_specs=(GraphRewriteSpec((tag_constants.SERVING,), ()),), strip_default_attrs=False )
Exports inference graph as a SavedModel into given dir.
export_dir_base
: A string containing a directory to write the exported graph and checkpoints.serving_input_fn
: A function that takes no argument and returns an InputFnOps
.default_output_alternative_key
: the name of the head to serve when none is specified. Not needed for single-headed models.assets_extra
: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as {'my_asset_file.txt': '/path/to/my_asset_file.txt'}
.as_text
: whether to write the SavedModel proto in text format.checkpoint_path
: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen.graph_rewrite_specs
: an iterable of GraphRewriteSpec
. Each element will produce a separate MetaGraphDef within the exported SavedModel, tagged and rewritten as specified. Defaults to a single entry using the default serving tag ("serve") and no rewriting.strip_default_attrs
: Boolean. If True
, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see Stripping Default-Valued Attributes.The string path to the exported directory.
ValueError
: if an unrecognized export_type is requested.fit
fit( x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None )
See Trainable
. (deprecated arguments)
SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-12-01. Instructions for updating: Estimator is decoupled from Scikit Learn interface by moving into separate class SKCompat. Arguments x, y and batch_size are only available in the SKCompat class, Estimator will only accept input_fn. Example conversion: est = Estimator(...) -> est = SKCompat(Estimator(...))
ValueError
: If x
or y
are not None
while input_fn
is not None
.ValueError
: If both steps
and max_steps
are not None
.get_params
get_params(deep=True)
Get parameters for this estimator.
deep
: boolean, optional
If True
, will return the parameters for this estimator and contained subobjects that are estimators.
params
: mapping of string to any Parameter names mapped to their values.get_variable_names
get_variable_names()
Returns list of all variable names in this model.
List of names.
get_variable_value
get_variable_value(name)
Returns value of the variable given by name.
name
: string, name of the tensor.Numpy array - value of the tensor.
partial_fit
partial_fit( x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None )
Incremental fit on a batch of samples. (deprecated arguments)
SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-12-01. Instructions for updating: Estimator is decoupled from Scikit Learn interface by moving into separate class SKCompat. Arguments x, y and batch_size are only available in the SKCompat class, Estimator will only accept input_fn. Example conversion: est = Estimator(...) -> est = SKCompat(Estimator(...))
This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts.
x
: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, input_fn
must be None
.y
: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, input_fn
must be None
.input_fn
: Input function. If set, x
, y
, and batch_size
must be None
.steps
: Number of steps for which to train model. If None
, train forever.batch_size
: minibatch size to use on the input, defaults to first dimension of x
. Must be None
if input_fn
is provided.monitors
: List of BaseMonitor
subclass instances. Used for callbacks inside the training loop.self
, for chaining.
ValueError
: If at least one of x
and y
is provided, and input_fn
is provided.predict
predict( x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True, iterate_batches=False )
Returns predictions for given features. (deprecated arguments)
SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-12-01. Instructions for updating: Estimator is decoupled from Scikit Learn interface by moving into separate class SKCompat. Arguments x, y and batch_size are only available in the SKCompat class, Estimator will only accept input_fn. Example conversion: est = Estimator(...) -> est = SKCompat(Estimator(...))
x
: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, input_fn
must be None
.input_fn
: Input function. If set, x
and 'batch_size' must be None
.batch_size
: Override default batch size. If set, 'input_fn' must be 'None'.outputs
: list of str
, name of the output to predict. If None
, returns all.as_iterable
: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).iterate_batches
: If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True.A numpy array of predicted classes or regression values if the constructor's model_fn
returns a Tensor
for predictions
or a dict
of numpy arrays if model_fn
returns a dict
. Returns an iterable of predictions if as_iterable is True.
ValueError
: If x and input_fn are both provided or both None
.set_params
set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter>
so that it's possible to update each component of a nested object.
**params
: Parameters.self
ValueError
: If params contain invalid names.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/learn/LinearEstimator