tf.one_hot(
indices,
depth,
on_value=None,
off_value=None,
axis=None,
dtype=None,
name=None
)
Defined in tensorflow/python/ops/array_ops.py.
See the guide: Tensor Transformations > Slicing and Joining
Returns a one-hot tensor.
The locations represented by indices in indices take value on_value, while all other locations take value off_value.
on_value and off_value must have matching data types. If dtype is also provided, they must be the same data type as specified by dtype.
If on_value is not provided, it will default to the value 1 with type dtype
If off_value is not provided, it will default to the value 0 with type dtype
If the input indices is rank N, the output will have rank N+1. The new axis is created at dimension axis (default: the new axis is appended at the end).
If indices is a scalar the output shape will be a vector of length depth
If indices is a vector of length features, the output shape will be:
features x depth if axis == -1 depth x features if axis == 0
If indices is a matrix (batch) with shape [batch, features], the output shape will be:
batch x features x depth if axis == -1 batch x depth x features if axis == 1 depth x batch x features if axis == 0
If dtype is not provided, it will attempt to assume the data type of on_value or off_value, if one or both are passed in. If none of on_value, off_value, or dtype are provided, dtype will default to the value tf.float32.
Note: If a non-numeric data type output is desired (tf.string,tf.bool, etc.), bothon_valueandoff_valuemust be provided toone_hot.
For example:
indices = [0, 1, 2]
depth = 3
tf.one_hot(indices, depth) # output: [3 x 3]
# [[1., 0., 0.],
# [0., 1., 0.],
# [0., 0., 1.]]
indices = [0, 2, -1, 1]
depth = 3
tf.one_hot(indices, depth,
on_value=5.0, off_value=0.0,
axis=-1) # output: [4 x 3]
# [[5.0, 0.0, 0.0], # one_hot(0)
# [0.0, 0.0, 5.0], # one_hot(2)
# [0.0, 0.0, 0.0], # one_hot(-1)
# [0.0, 5.0, 0.0]] # one_hot(1)
indices = [[0, 2], [1, -1]]
depth = 3
tf.one_hot(indices, depth,
on_value=1.0, off_value=0.0,
axis=-1) # output: [2 x 2 x 3]
# [[[1.0, 0.0, 0.0], # one_hot(0)
# [0.0, 0.0, 1.0]], # one_hot(2)
# [[0.0, 1.0, 0.0], # one_hot(1)
# [0.0, 0.0, 0.0]]] # one_hot(-1)
indices: A Tensor of indices.depth: A scalar defining the depth of the one hot dimension.on_value: A scalar defining the value to fill in output when indices[j] = i. (default: 1)off_value: A scalar defining the value to fill in output when indices[j] != i. (default: 0)axis: The axis to fill (default: -1, a new inner-most axis).dtype: The data type of the output tensor.name: A name for the operation (optional).output: The one-hot tensor.TypeError: If dtype of either on_value or off_value don't match dtype
TypeError: If dtype of on_value and off_value don't match one another
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/one_hot