truncated_normal_initializer
Inherits From: Initializer
tf.initializers.truncated_normal
tf.keras.initializers.TruncatedNormal
tf.truncated_normal_initializer
Defined in tensorflow/python/ops/init_ops.py
.
See the guide: Variables > Sharing Variables
Initializer that generates a truncated normal distribution.
These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.
mean
: a python scalar or a scalar tensor. Mean of the random values to generate.stddev
: a python scalar or a scalar tensor. Standard deviation of the random values to generate.seed
: A Python integer. Used to create random seeds. See tf.set_random_seed
for behavior.dtype
: The data type. Only floating point types are supported.__init__
__init__( mean=0.0, stddev=1.0, seed=None, dtype=tf.float32 )
Initialize self. See help(type(self)) for accurate signature.
__call__
__call__( shape, dtype=None, partition_info=None )
Call self as a function.
from_config
from_config( cls, config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config)
config
: A Python dictionary. It will typically be the output of get_config
.An Initializer instance.
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
A JSON-serializable Python dict.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/truncated_normal_initializer