Defined in header <math.h> | ||
---|---|---|
float fmaf( float x, float y, float z ); | (1) | (since C99) |
double fma( double x, double y, double z ); | (2) | (since C99) |
long double fmal( long double x, long double y, long double z ); | (3) | (since C99) |
#define FP_FAST_FMA /* implementation-defined */ | (4) | (since C99) |
#define FP_FAST_FMAF /* implementation-defined */ | (5) | (since C99) |
#define FP_FAST_FMAL /* implementation-defined */ | (6) | (since C99) |
Defined in header <tgmath.h> | ||
#define fma( x, y, z ) | (7) | (since C99) |
(x*y) + z
as if to infinite precision and rounded only once to fit the result type.FP_FAST_FMA
, FP_FAST_FMAF
, or FP_FAST_FMAL
are defined, the corresponding function fmaf
, fma
, or fmal
evaluates faster (in addition to being more precise) than the expression x*y+z
for float
, double
, and long double
arguments, respectively. If defined, these macros evaluate to integer 1
.long double
, fmal
is called. Otherwise, if any argument has integer type or has type double
, fma
is called. Otherwise, fmaf
is called.x, y, z | - | floating point values |
If successful, returns the value of (x*y) + z
as if calculated to infinite precision and rounded once to fit the result type (or, alternatively, calculated as a single ternary floating-point operation).
If a range error due to overflow occurs, ±HUGE_VAL
, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct value (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
FE_INVALID
is raised FE_INVALID
may be raised x*y
is an exact infinity and z is an infinity with the opposite sign, NaN is returned and FE_INVALID
is raised x*y
aren't 0*Inf or Inf*0, then NaN is returned (without FE_INVALID
). This operation is commonly implemented in hardware as fused multiply-add CPU instruction. If supported by hardware, the appropriate FP_FAST_FMA*
macros are expected to be defined, but many implementations make use of the CPU instruction even when the macros are not defined.
POSIX specifies that the situation where the value x*y
is invalid and z is a NaN is a domain error.
Due to its infinite intermediate precision, fma
is a common building block of other correctly-rounded mathematical operations, such as sqrt
or even the division (where not provided by the CPU, e.g. Itanium).
As with all floating-point expressions, the expression (x*y) + z
may be compiled as a fused mutiply-add unless the #pragma
STDC FP_CONTRACT
is off.
#include <stdio.h> #include <math.h> #include <float.h> #include <fenv.h> #pragma STDC FENV_ACCESS ON int main(void) { // demo the difference between fma and built-in operators double in = 0.1; printf("0.1 double is %.23f (%a)\n", in, in); printf("0.1*10 is 1.0000000000000000555112 (0x8.0000000000002p-3)," " or 1.0 if rounded to double\n"); double expr_result = 0.1 * 10 - 1; printf("0.1 * 10 - 1 = %g : 1 subtracted after " "intermediate rounding to 1.0\n", expr_result); double fma_result = fma(0.1, 10, -1); printf("fma(0.1, 10, -1) = %g (%a)\n", fma_result, fma_result); // fma use in double-double arithmetic printf("\nin double-double arithmetic, 0.1 * 10 is representable as "); double high = 0.1 * 10; double low = fma(0.1, 10, -high); printf("%g + %g\n\n", high, low); //error handling feclearexcept(FE_ALL_EXCEPT); printf("fma(+Inf, 10, -Inf) = %f\n", fma(INFINITY, 10, -INFINITY)); if(fetestexcept(FE_INVALID)) puts(" FE_INVALID raised"); }
Possible output:
0.1 double is 0.10000000000000000555112 (0x1.999999999999ap-4) 0.1*10 is 1.0000000000000000555112 (0x8.0000000000002p-3), or 1.0 if rounded to double 0.1 * 10 - 1 = 0 : 1 subtracted after intermediate rounding to 1.0 fma(0.1, 10, -1) = 5.55112e-17 (0x1p-54) in double-double arithmetic, 0.1 * 10 is representable as 1 + 5.55112e-17 fma(+Inf, 10, -Inf) = -nan FE_INVALID raised
(C99)(C99)(C99) | computes signed remainder of the floating-point division operation (function) |
(C99)(C99)(C99) | computes signed remainder as well as the three last bits of the division operation (function) |
C++ documentation for fma |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/c/numeric/math/fma