Defined in header <cmath> | ||
|---|---|---|
| (1) | ||
float exp ( float num ); double exp ( double num ); long double exp ( long double num ); | (until C++23) | |
/* floating-point-type */
exp ( /* floating-point-type */ num );
| (since C++23) (constexpr since C++26) | |
float expf( float num ); | (2) | (since C++11) (constexpr since C++26) |
long double expl( long double num ); | (3) | (since C++11) (constexpr since C++26) |
| Additional overloads (since C++11) | ||
Defined in header <cmath> | ||
template< class Integer > double exp ( Integer num ); | (A) | (constexpr since C++26) |
2.7182818...
double | (since C++11) |
| num | - | floating-point or integer value |
If no errors occur, the base-e exponential of num (enum
) is returned.
If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
For IEEE-compatible type double, overflow is guaranteed if 709.8 < num, and underflow is guaranteed if num < -708.4.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::exp(num) has the same effect as std::exp(static_cast<double>(num)).
#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <numbers>
// #pragma STDC FENV_ACCESS ON
consteval double approx_e()
{
long double e {1.0};
for (auto fac {1ull}, n{1llu}; n != 18; ++n, fac *= n)
e += 1.0 / fac;
return e;
}
int main()
{
std::cout << std::setprecision(16)
<< "exp(1) = e¹ = " << std::exp(1) << '\n'
<< "numbers::e = " << std::numbers::e << '\n'
<< "approx_e = " << approx_e() << '\n'
<< "FV of $100, continuously compounded at 3% for 1 year = "
<< std::setprecision(6) << 100 * std::exp(0.03) << '\n';
// special values
std::cout << "exp(-0) = " << std::exp(-0.0) << '\n'
<< "exp(-Inf) = " << std::exp(-INFINITY) << '\n';
// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);
std::cout << "exp(710) = " << std::exp(710) << '\n';
if (errno == ERANGE)
std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n';
if (std::fetestexcept(FE_OVERFLOW))
std::cout << " FE_OVERFLOW raised\n";
}Possible output:
exp(1) = e¹ = 2.718281828459045
numbers::e = 2.718281828459045
approx_e = 2.718281828459045
FV of $100, continuously compounded at 3% for 1 year = 103.045
exp(-0) = 1
exp(-Inf) = 0
exp(710) = inf
errno == ERANGE: Numerical result out of range
FE_OVERFLOW raised|
(C++11)(C++11)(C++11) | returns 2 raised to the given power (\({\small 2^x}\)2x) (function) |
|
(C++11)(C++11)(C++11) | returns e raised to the given power, minus one (\({\small e^x-1}\)ex-1) (function) |
|
(C++11)(C++11) | computes natural (base e) logarithm (\({\small \ln{x} }\)ln(x)) (function) |
| complex base e exponential (function template) |
|
applies the function std::exp to each element of valarray (function template) |
|
C documentation for exp |
|
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/exp