/C++

# std::cos(std::complex)

Defined in header <complex>
template< class T >
complex<T> cos( const complex<T>& z );

Computes complex cosine of a complex value z.

### Parameters

 z - complex value

### Return value

If no errors occur, the complex cosine of z is returned.

Errors and special cases are handled as if the operation is implemented by std::cosh(i*z), where i is the imaginary unit.

The cosine is an entire function on the complex plane, and has no branch cuts. Mathematical definition of the cosine is cos z =

eiz+e-iz/2

### Example

#include <iostream>
#include <cmath>
#include <complex>

int main()
{
std::cout << std::fixed;
std::complex<double> z(1, 0); // behaves like real cosine along the real line
std::cout << "cos" << z << " = " << std::cos(z)
<< " ( cos(1) = " << std::cos(1) << ")\n";

std::complex<double> z2(0, 1); // behaves like real cosh along the imaginary line
std::cout << "cos" << z2 << " = " << std::cos(z2)
<< " (cosh(1) = " << std::cosh(1) << ")\n";
}

Output:

cos(1.000000,0.000000) = (0.540302,-0.000000) ( cos(1) = 0.540302)
cos(0.000000,1.000000) = (1.543081,-0.000000) (cosh(1) = 1.543081)

 sin(std::complex) computes sine of a complex number ($${\small\sin{z} }$$sin(z)) (function template) tan(std::complex) computes tangent of a complex number ($${\small\tan{z} }$$tan(z)) (function template) acos(std::complex) (C++11) computes arc cosine of a complex number ($${\small\arccos{z} }$$arccos(z)) (function template) coscosfcosl (C++11)(C++11) computes cosine ($${\small\cos{x} }$$cos(x)) (function) cos(std::valarray) applies the function std::cos to each element of valarray (function template) C documentation for ccos