Defined in header <cmath> | ||
---|---|---|
(1) | ||
float riemann_zeta ( float num ); double riemann_zeta ( double num ); long double riemann_zeta ( long double num ); | (since C++17) (until C++23) | |
/* floating-point-type */ riemann_zeta( /* floating-point-type */ num ); | (since C++23) | |
float riemann_zetaf( float num ); | (2) | (since C++17) |
long double riemann_zetal( long double num ); | (3) | (since C++17) |
Additional overloads | ||
Defined in header <cmath> | ||
template< class Integer > double riemann_zeta ( Integer num ); | (A) | (since C++17) |
num
. The library provides overloads of std::riemann_zeta
for all cv-unqualified floating-point types as the type of the parameter num
. (since C++23)
double
num | - | floating-point or value |
If no errors occur, value of the Riemann zeta function of num
, ζ(num), defined for the entire real axis:
Errors may be reported as specified in math_errhandling
.
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num
of integer type, std::riemann_zeta(num)
has the same effect as std::riemann_zeta(static_cast<double>(num))
.
#include <cmath> #include <iostream> #include <numbers> constexpr auto π = std::numbers::pi; int main() { // spot checks for well-known values std::cout << "ζ(-1) = " << std::riemann_zeta(-1) << '\n' << "ζ(0) = " << std::riemann_zeta(0) << '\n' << "ζ(1) = " << std::riemann_zeta(1) << '\n' << "ζ(0.5) = " << std::riemann_zeta(0.5) << '\n' << "ζ(2) = " << std::riemann_zeta(2) << '\n' << "π²/6 = " << π * π / 6 << '\n'; }
Output:
ζ(-1) = -0.0833333 ζ(0) = -0.5 ζ(1) = inf ζ(0.5) = -1.46035 ζ(2) = 1.64493 π²/6 = 1.64493
Weisstein, Eric W. "Riemann Zeta Function." From MathWorld — A Wolfram Web Resource. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/special_functions/riemann_zeta