W3cubDocs

/Eigen3

Eigen::Hyperplane

template<typename _Scalar, int _AmbientDim, int _Options>
class Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >

A hyperplane.

This is defined in the Geometry module.

#include <Eigen/Geometry> 

A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.

Template Parameters
_Scalar the scalar type, i.e., the type of the coefficients
_AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. Notice that the dimension of the hyperplane is _AmbientDim-1.

This class represents an hyperplane as the zero set of the implicit equation \( n \cdot x + d = 0 \) where \( n \) is a unit normal vector of the plane (linear part) and \( d \) is the distance (offset) to the origin.

typedef Eigen::Index Index
Scalar absDistance (const VectorType &p) const
template<typename NewScalarType >
internal::cast_return_type< Hyperplane, Hyperplane< NewScalarType, AmbientDimAtCompileTime, Options > >::type cast () const
Coefficients & coeffs ()
const Coefficients & coeffs () const
Index dim () const
Hyperplane ()
template<typename OtherScalarType , int OtherOptions>
Hyperplane (const Hyperplane< OtherScalarType, AmbientDimAtCompileTime, OtherOptions > &other)
Hyperplane (const ParametrizedLine< Scalar, AmbientDimAtCompileTime > &parametrized)
Hyperplane (const VectorType &n, const Scalar &d)
Hyperplane (const VectorType &n, const VectorType &e)
Hyperplane (Index _dim)
VectorType intersection (const Hyperplane &other) const
template<int OtherOptions>
bool isApprox (const Hyperplane< Scalar, AmbientDimAtCompileTime, OtherOptions > &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
NormalReturnType normal ()
ConstNormalReturnType normal () const
void normalize (void)
Scalar & offset ()
const Scalar & offset () const
VectorType projection (const VectorType &p) const
Scalar signedDistance (const VectorType &p) const
template<typename XprType >
Hyperplane & transform (const MatrixBase< XprType > &mat, TransformTraits traits=Affine)
template<int TrOptions>
Hyperplane & transform (const Transform< Scalar, AmbientDimAtCompileTime, Affine, TrOptions > &t, TransformTraits traits=Affine)
static Hyperplane Through (const VectorType &p0, const VectorType &p1)
static Hyperplane Through (const VectorType &p0, const VectorType &p1, const VectorType &p2)

Index

template<typename _Scalar , int _AmbientDim, int _Options>
typedef Eigen::Index Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Index
Deprecated:
since Eigen 3.3

Hyperplane() [1/6]

template<typename _Scalar , int _AmbientDim, int _Options>
Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Hyperplane ( )
inline

Default constructor without initialization

Hyperplane() [2/6]

template<typename _Scalar , int _AmbientDim, int _Options>
Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Hyperplane ( Index _dim )
inlineexplicit

Constructs a dynamic-size hyperplane with _dim the dimension of the ambient space

Hyperplane() [3/6]

template<typename _Scalar , int _AmbientDim, int _Options>
Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Hyperplane ( const VectorType & n,
const VectorType & e
)
inline

Construct a plane from its normal n and a point e onto the plane.

Warning
the vector normal is assumed to be normalized.

Hyperplane() [4/6]

template<typename _Scalar , int _AmbientDim, int _Options>
Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Hyperplane ( const VectorType & n,
const Scalar & d
)
inline

Constructs a plane from its normal n and distance to the origin d such that the algebraic equation of the plane is \( n \cdot x + d = 0 \).

Warning
the vector normal is assumed to be normalized.

Hyperplane() [5/6]

template<typename _Scalar , int _AmbientDim, int _Options>
Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Hyperplane ( const ParametrizedLine< Scalar, AmbientDimAtCompileTime > & parametrized )
inlineexplicit

Constructs a hyperplane passing through the parametrized line parametrized. If the dimension of the ambient space is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.

Hyperplane() [6/6]

template<typename _Scalar , int _AmbientDim, int _Options>
template<typename OtherScalarType , int OtherOptions>
Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Hyperplane ( const Hyperplane< OtherScalarType, AmbientDimAtCompileTime, OtherOptions > & other )
inlineexplicit

Copy constructor with scalar type conversion

absDistance()

template<typename _Scalar , int _AmbientDim, int _Options>
Scalar Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::absDistance ( const VectorType & p ) const
inline
Returns
the absolute distance between the plane *this and a point p.
See also
signedDistance()

cast()

template<typename _Scalar , int _AmbientDim, int _Options>
template<typename NewScalarType >
internal::cast_return_type<Hyperplane, Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::cast ( ) const
inline
Returns
*this with scalar type casted to NewScalarType

Note that if NewScalarType is equal to the current scalar type of *this then this function smartly returns a const reference to *this.

coeffs() [1/2]

template<typename _Scalar , int _AmbientDim, int _Options>
Coefficients& Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::coeffs ( )
inline
Returns
a non-constant reference to the coefficients c_i of the plane equation: \( c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \)

coeffs() [2/2]

template<typename _Scalar , int _AmbientDim, int _Options>
const Coefficients& Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::coeffs ( ) const
inline
Returns
a constant reference to the coefficients c_i of the plane equation: \( c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \)

dim()

template<typename _Scalar , int _AmbientDim, int _Options>
Index Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::dim ( ) const
inline
Returns
the dimension in which the plane holds

intersection()

template<typename _Scalar , int _AmbientDim, int _Options>
VectorType Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::intersection ( const Hyperplane< _Scalar, _AmbientDim, _Options > & other ) const
inline
Returns
the intersection of *this with other.
Warning
The ambient space must be a plane, i.e. have dimension 2, so that *this and other are lines.
Note
If other is approximately parallel to *this, this method will return any point on *this.

isApprox()

template<typename _Scalar , int _AmbientDim, int _Options>
template<int OtherOptions>
bool Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::isApprox ( const Hyperplane< Scalar, AmbientDimAtCompileTime, OtherOptions > & other,
const typename NumTraits< Scalar >::Real & prec = NumTraits<Scalar>::dummy_precision()
) const
inline
Returns
true if *this is approximately equal to other, within the precision determined by prec.
See also
MatrixBase::isApprox()

normal() [1/2]

template<typename _Scalar , int _AmbientDim, int _Options>
NormalReturnType Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::normal ( )
inline
Returns
a non-constant reference to the unit normal vector of the plane, which corresponds to the linear part of the implicit equation.

normal() [2/2]

template<typename _Scalar , int _AmbientDim, int _Options>
ConstNormalReturnType Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::normal ( ) const
inline
Returns
a constant reference to the unit normal vector of the plane, which corresponds to the linear part of the implicit equation.

normalize()

template<typename _Scalar , int _AmbientDim, int _Options>
void Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::normalize ( void )
inline

normalizes *this

offset() [1/2]

template<typename _Scalar , int _AmbientDim, int _Options>
Scalar& Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::offset ( )
inline
Returns
a non-constant reference to the distance to the origin, which is also the constant part of the implicit equation

offset() [2/2]

template<typename _Scalar , int _AmbientDim, int _Options>
const Scalar& Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::offset ( ) const
inline
Returns
the distance to the origin, which is also the "constant term" of the implicit equation
Warning
the vector normal is assumed to be normalized.

projection()

template<typename _Scalar , int _AmbientDim, int _Options>
VectorType Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::projection ( const VectorType & p ) const
inline
Returns
the projection of a point p onto the plane *this.

signedDistance()

template<typename _Scalar , int _AmbientDim, int _Options>
Scalar Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::signedDistance ( const VectorType & p ) const
inline
Returns
the signed distance between the plane *this and a point p.
See also
absDistance()

Through() [1/2]

template<typename _Scalar , int _AmbientDim, int _Options>
static Hyperplane Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Through ( const VectorType & p0,
const VectorType & p1
)
inlinestatic

Constructs a hyperplane passing through the two points. If the dimension of the ambient space is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.

Through() [2/2]

template<typename _Scalar , int _AmbientDim, int _Options>
static Hyperplane Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::Through ( const VectorType & p0,
const VectorType & p1,
const VectorType & p2
)
inlinestatic

Constructs a hyperplane passing through the three points. The dimension of the ambient space is required to be exactly 3.

transform() [1/2]

template<typename _Scalar , int _AmbientDim, int _Options>
template<typename XprType >
Hyperplane& Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::transform ( const MatrixBase< XprType > & mat,
TransformTraits traits = Affine
)
inline

Applies the transformation matrix mat to *this and returns a reference to *this.

Parameters
mat the Dim x Dim transformation matrix
traits specifies whether the matrix mat represents an Isometry or a more generic Affine transformation. The default is Affine.

transform() [2/2]

template<typename _Scalar , int _AmbientDim, int _Options>
template<int TrOptions>
Hyperplane& Eigen::Hyperplane< _Scalar, _AmbientDim, _Options >::transform ( const Transform< Scalar, AmbientDimAtCompileTime, Affine, TrOptions > & t,
TransformTraits traits = Affine
)
inline

Applies the transformation t to *this and returns a reference to *this.

Parameters
t the transformation of dimension Dim
traits specifies whether the transformation t represents an Isometry or a more generic Affine transformation. The default is Affine. Other kind of transformations are not supported.

The documentation for this class was generated from the following file:

© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1Hyperplane.html