W3cubDocs

/Eigen3

Eigen::QuaternionBase

template<class Derived>
class Eigen::QuaternionBase< Derived >

Base class for quaternion expressions.

This is defined in the Geometry module.

#include <Eigen/Geometry> 
Template Parameters
Derived derived type (CRTP)
See also
class Quaternion
typedef AngleAxis< Scalar > AngleAxisType
typedef Matrix< Scalar, 3, 3 > Matrix3
typedef Matrix< Scalar, 3, 1 > Vector3
- Public Types inherited from Eigen::RotationBase< Derived, 3 >
typedef Matrix< Scalar, Dim, Dim > RotationMatrixType
typedef internal::traits< Derived >::Scalar Scalar
Vector3 _transformVector (const Vector3 &v) const
template<class OtherDerived >
internal::traits< Derived >::Scalar angularDistance (const QuaternionBase< OtherDerived > &other) const
template<typename NewScalarType >
internal::cast_return_type< Derived, Quaternion< NewScalarType > >::type cast () const
internal::traits< Derived >::Coefficients & coeffs ()
const internal::traits< Derived >::Coefficients & coeffs () const
Quaternion< Scalar > conjugate () const
template<class OtherDerived >
Scalar dot (const QuaternionBase< OtherDerived > &other) const
Quaternion< Scalar > inverse () const
template<class OtherDerived >
bool isApprox (const QuaternionBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Scalar norm () const
void normalize ()
Quaternion< Scalar > normalized () const
template<class OtherDerived >
bool operator!= (const QuaternionBase< OtherDerived > &other) const
template<class OtherDerived >
Quaternion< typename internal::traits< Derived >::Scalar > operator* (const QuaternionBase< OtherDerived > &other) const
template<class OtherDerived >
Derived & operator*= (const QuaternionBase< OtherDerived > &q)
Derived & operator= (const AngleAxisType &aa)
template<class MatrixDerived >
Derived & operator= (const MatrixBase< MatrixDerived > &xpr)
template<class OtherDerived >
bool operator== (const QuaternionBase< OtherDerived > &other) const
template<typename Derived1 , typename Derived2 >
Derived & setFromTwoVectors (const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b)
QuaternionBase & setIdentity ()
template<class OtherDerived >
Quaternion< typename internal::traits< Derived >::Scalar > slerp (const Scalar &t, const QuaternionBase< OtherDerived > &other) const
Scalar squaredNorm () const
Matrix3 toRotationMatrix () const
VectorBlock< Coefficients, 3 > vec ()
const VectorBlock< const Coefficients, 3 > vec () const
NonConstCoeffReturnType w ()
CoeffReturnType w () const
NonConstCoeffReturnType x ()
CoeffReturnType x () const
NonConstCoeffReturnType y ()
CoeffReturnType y () const
NonConstCoeffReturnType z ()
CoeffReturnType z () const
- Public Member Functions inherited from Eigen::RotationBase< Derived, 3 >
Derived inverse () const
RotationMatrixType matrix () const
internal::rotation_base_generic_product_selector< Derived, OtherDerived, OtherDerived::IsVectorAtCompileTime >::ReturnType operator* (const EigenBase< OtherDerived > &e) const
Transform< Scalar, Dim, Mode > operator* (const Transform< Scalar, Dim, Mode, Options > &t) const
Transform< Scalar, Dim, Isometry > operator* (const Translation< Scalar, Dim > &t) const
RotationMatrixType operator* (const UniformScaling< Scalar > &s) const
RotationMatrixType toRotationMatrix () const
static Quaternion< Scalar > Identity ()

AngleAxisType

template<class Derived >
typedef AngleAxis<Scalar> Eigen::QuaternionBase< Derived >::AngleAxisType

the equivalent angle-axis type

Matrix3

template<class Derived >
typedef Matrix<Scalar,3,3> Eigen::QuaternionBase< Derived >::Matrix3

the equivalent rotation matrix type

Vector3

template<class Derived >
typedef Matrix<Scalar,3,1> Eigen::QuaternionBase< Derived >::Vector3

the type of a 3D vector

_transformVector()

template<class Derived >
QuaternionBase< Derived >::Vector3 Eigen::QuaternionBase< Derived >::_transformVector ( const Vector3 & v ) const
inline

return the result vector of v through the rotation

Rotation of a vector by a quaternion.

Remarks
If the quaternion is used to rotate several points (>1) then it is much more efficient to first convert it to a 3x3 Matrix. Comparison of the operation cost for n transformations:
  • Quaternion2: 30n
  • Via a Matrix3: 24 + 15n

angularDistance()

template<class Derived >
template<class OtherDerived >
internal::traits<Derived>::Scalar Eigen::QuaternionBase< Derived >::angularDistance ( const QuaternionBase< OtherDerived > & other ) const
inline
Returns
the angle (in radian) between two rotations
See also
dot()

cast()

template<class Derived >
template<typename NewScalarType >
internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type Eigen::QuaternionBase< Derived >::cast ( ) const
inline
Returns
*this with scalar type casted to NewScalarType

Note that if NewScalarType is equal to the current scalar type of *this then this function smartly returns a const reference to *this.

coeffs() [1/2]

template<class Derived >
internal::traits<Derived>::Coefficients& Eigen::QuaternionBase< Derived >::coeffs ( )
inline
Returns
a vector expression of the coefficients (x,y,z,w)

coeffs() [2/2]

template<class Derived >
const internal::traits<Derived>::Coefficients& Eigen::QuaternionBase< Derived >::coeffs ( ) const
inline
Returns
a read-only vector expression of the coefficients (x,y,z,w)

conjugate()

template<class Derived >
Quaternion< typename internal::traits< Derived >::Scalar > Eigen::QuaternionBase< Derived >::conjugate ( void ) const
inline
Returns
the conjugated quaternion
the conjugate of the *this which is equal to the multiplicative inverse if the quaternion is normalized. The conjugate of a quaternion represents the opposite rotation.
See also
Quaternion2::inverse()

dot()

template<class Derived >
template<class OtherDerived >
Scalar Eigen::QuaternionBase< Derived >::dot ( const QuaternionBase< OtherDerived > & other ) const
inline
Returns
the dot product of *this and other Geometrically speaking, the dot product of two unit quaternions corresponds to the cosine of half the angle between the two rotations.
See also
angularDistance()

Identity()

template<class Derived >
static Quaternion<Scalar> Eigen::QuaternionBase< Derived >::Identity ( )
inlinestatic
Returns
a quaternion representing an identity rotation
See also
MatrixBase::Identity()

inverse()

template<class Derived >
Quaternion< typename internal::traits< Derived >::Scalar > Eigen::QuaternionBase< Derived >::inverse
inline
Returns
the quaternion describing the inverse rotation
the multiplicative inverse of *this Note that in most cases, i.e., if you simply want the opposite rotation, and/or the quaternion is normalized, then it is enough to use the conjugate.
See also
QuaternionBase::conjugate()

isApprox()

template<class Derived >
template<class OtherDerived >
bool Eigen::QuaternionBase< Derived >::isApprox ( const QuaternionBase< OtherDerived > & other,
const RealScalar & prec = NumTraits<Scalar>::dummy_precision()
) const
inline
Returns
true if *this is approximately equal to other, within the precision determined by prec.
See also
MatrixBase::isApprox()

norm()

template<class Derived >
Scalar Eigen::QuaternionBase< Derived >::norm ( ) const
inline
Returns
the norm of the quaternion's coefficients
See also
QuaternionBase::squaredNorm(), MatrixBase::norm()

normalize()

template<class Derived >
void Eigen::QuaternionBase< Derived >::normalize ( void )
inline

Normalizes the quaternion *this

See also
normalized(), MatrixBase::normalize()

normalized()

template<class Derived >
Quaternion<Scalar> Eigen::QuaternionBase< Derived >::normalized ( ) const
inline
Returns
a normalized copy of *this
See also
normalize(), MatrixBase::normalized()

operator!=()

template<class Derived >
template<class OtherDerived >
bool Eigen::QuaternionBase< Derived >::operator!= ( const QuaternionBase< OtherDerived > & other ) const
inline
Returns
true if at least one pair of coefficients of *this and other are not exactly equal to each other.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator==

operator*()

template<class Derived >
template<class OtherDerived >
Quaternion<typename internal::traits<Derived>::Scalar> Eigen::QuaternionBase< Derived >::operator* ( const QuaternionBase< OtherDerived > & other ) const
inline
Returns
the concatenation of two rotations as a quaternion-quaternion product

operator*=()

template<class Derived >
template<class OtherDerived >
Derived & Eigen::QuaternionBase< Derived >::operator*= ( const QuaternionBase< OtherDerived > & other )
inline
See also
operator*(Quaternion)

operator=() [1/2]

template<class Derived >
Derived & Eigen::QuaternionBase< Derived >::operator= ( const AngleAxisType & aa )
inline

Set *this from an angle-axis aa and returns a reference to *this

operator=() [2/2]

template<class Derived >
template<class MatrixDerived >
Derived& Eigen::QuaternionBase< Derived >::operator= ( const MatrixBase< MatrixDerived > & xpr )
inline

Set *this from the expression xpr:

  • if xpr is a 4x1 vector, then xpr is assumed to be a quaternion
  • if xpr is a 3x3 matrix, then xpr is assumed to be rotation matrix and xpr is converted to a quaternion

operator==()

template<class Derived >
template<class OtherDerived >
bool Eigen::QuaternionBase< Derived >::operator== ( const QuaternionBase< OtherDerived > & other ) const
inline
Returns
true if each coefficients of *this and other are all exactly equal.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator!=

setFromTwoVectors()

template<class Derived >
template<typename Derived1 , typename Derived2 >
Derived & Eigen::QuaternionBase< Derived >::setFromTwoVectors ( const MatrixBase< Derived1 > & a,
const MatrixBase< Derived2 > & b
)
inline
Returns
the quaternion which transform a into b through a rotation

Sets *this to be a quaternion representing a rotation between the two arbitrary vectors a and b. In other words, the built rotation represent a rotation sending the line of direction a to the line of direction b, both lines passing through the origin.

Returns
a reference to *this.

Note that the two input vectors do not have to be normalized, and do not need to have the same norm.

setIdentity()

template<class Derived >
QuaternionBase& Eigen::QuaternionBase< Derived >::setIdentity ( )
inline

slerp()

template<class Derived >
template<class OtherDerived >
Quaternion<typename internal::traits<Derived>::Scalar> Eigen::QuaternionBase< Derived >::slerp ( const Scalar & t,
const QuaternionBase< OtherDerived > & other
) const
Returns
the spherical linear interpolation between the two quaternions *this and other at the parameter t in [0;1].

This represents an interpolation for a constant motion between *this and other, see also http://en.wikipedia.org/wiki/Slerp.

squaredNorm()

template<class Derived >
Scalar Eigen::QuaternionBase< Derived >::squaredNorm ( ) const
inline
Returns
the squared norm of the quaternion's coefficients
See also
QuaternionBase::norm(), MatrixBase::squaredNorm()

toRotationMatrix()

template<class Derived >
QuaternionBase< Derived >::Matrix3 Eigen::QuaternionBase< Derived >::toRotationMatrix ( void ) const
inline
Returns
an equivalent 3x3 rotation matrix

Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to be normalized, otherwise the result is undefined.

vec() [1/2]

template<class Derived >
VectorBlock<Coefficients,3> Eigen::QuaternionBase< Derived >::vec ( )
inline
Returns
a vector expression of the imaginary part (x,y,z)

vec() [2/2]

template<class Derived >
const VectorBlock<const Coefficients,3> Eigen::QuaternionBase< Derived >::vec ( ) const
inline
Returns
a read-only vector expression of the imaginary part (x,y,z)

w() [1/2]

template<class Derived >
NonConstCoeffReturnType Eigen::QuaternionBase< Derived >::w ( )
inline
Returns
a reference to the w coefficient (if Derived is a non-const lvalue)

w() [2/2]

template<class Derived >
CoeffReturnType Eigen::QuaternionBase< Derived >::w ( ) const
inline
Returns
the w coefficient

x() [1/2]

template<class Derived >
NonConstCoeffReturnType Eigen::QuaternionBase< Derived >::x ( )
inline
Returns
a reference to the x coefficient (if Derived is a non-const lvalue)

x() [2/2]

template<class Derived >
CoeffReturnType Eigen::QuaternionBase< Derived >::x ( ) const
inline
Returns
the x coefficient

y() [1/2]

template<class Derived >
NonConstCoeffReturnType Eigen::QuaternionBase< Derived >::y ( )
inline
Returns
a reference to the y coefficient (if Derived is a non-const lvalue)

y() [2/2]

template<class Derived >
CoeffReturnType Eigen::QuaternionBase< Derived >::y ( ) const
inline
Returns
the y coefficient

z() [1/2]

template<class Derived >
NonConstCoeffReturnType Eigen::QuaternionBase< Derived >::z ( )
inline
Returns
a reference to the z coefficient (if Derived is a non-const lvalue)

z() [2/2]

template<class Derived >
CoeffReturnType Eigen::QuaternionBase< Derived >::z ( ) const
inline
Returns
the z coefficient

The documentation for this class was generated from the following file:

© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1QuaternionBase.html