W3cubDocs

/Eigen3

Eigen::EulerAngles

template<typename _Scalar, class _System>
class Eigen::EulerAngles< _Scalar, _System >

Represents a rotation in a 3 dimensional space as three Euler angles.

Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.

Here is how intrinsic Euler angles works:

  • first, rotate the axes system over the alpha axis in angle alpha
  • then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
  • then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
Note
This class support only intrinsic Euler angles for simplicity, see EulerSystem how to easily overcome this for extrinsic systems.

Rotation representation and conversions

It has been proved(see Wikipedia link below) that every rotation can be represented by Euler angles, but there is no single representation (e.g. unlike rotation matrices). Therefore, you can convert from Eigen rotation and to them (including rotation matrices, which is not called "rotations" by Eigen design).

Euler angles usually used for:

  • convenient human representation of rotation, especially in interactive GUI.
  • gimbal systems and robotics
  • efficient encoding(i.e. 3 floats only) of rotation for network protocols.

However, Euler angles are slow comparing to quaternion or matrices, because their unnatural math definition, although it's simple for human. To overcome this, this class provide easy movement from the math friendly representation to the human friendly representation, and vise-versa.

All the user need to do is a safe simple C++ type conversion, and this class take care for the math. Additionally, some axes related computation is done in compile time.

Euler angles ranges in conversions

Rotations representation as EulerAngles are not single (unlike matrices), and even have infinite EulerAngles representations.
For example, add or subtract 2*PI from either angle of EulerAngles and you'll get the same rotation. This is the general reason for infinite representation, but it's not the only general reason for not having a single representation.

When converting rotation to EulerAngles, this class convert it to specific ranges When converting some rotation to EulerAngles, the rules for ranges are as follow:

  • If the rotation we converting from is an EulerAngles (even when it represented as RotationBase explicitly), angles ranges are undefined.
  • otherwise, alpha and gamma angles will be in the range [-PI, PI].
    As for Beta angle:
    • If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
    • otherwise:
      • If the beta axis is positive, the beta angle will be in the range [0, PI]
      • If the beta axis is negative, the beta angle will be in the range [-PI, 0]
See also
EulerAngles(const MatrixBase<Derived>&)
EulerAngles(const RotationBase<Derived, 3>&)

Convenient user typedefs

Convenient typedefs for EulerAngles exist for float and double scalar, in a form of EulerAngles{A}{B}{C}{scalar}, e.g. EulerAnglesXYZd, EulerAnglesZYZf.

Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef. If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with a word that represent what you need.

Example

#include <unsupported/Eigen/EulerAngles>
#include <iostream>
 
using namespace Eigen;
 
int main()
{
  // A common Euler system by many armies around the world,
  //  where the first one is the azimuth(the angle from the north -
  //   the same angle that is show in compass)
  //  and the second one is elevation(the angle from the horizon)
  //  and the third one is roll(the angle between the horizontal body
  //   direction and the plane ground surface)
  // Keep remembering we're using radian angles here!
  typedef EulerSystem<-EULER_Z, EULER_Y, EULER_X> MyArmySystem;
  typedef EulerAngles<double, MyArmySystem> MyArmyAngles;
  
  MyArmyAngles vehicleAngles(
    3.14/*PI*/ / 2, /* heading to east, notice that this angle is counter-clockwise */
    -0.3, /* going down from a mountain */
    0.1); /* slightly rolled to the right */
  
  // Some Euler angles representation that our plane use.
  EulerAnglesZYZd planeAngles(0.78474, 0.5271, -0.513794);
  
  MyArmyAngles planeAnglesInMyArmyAngles(planeAngles);
  
  std::cout << "vehicle angles(MyArmy):     " << vehicleAngles << std::endl;
  std::cout << "plane angles(ZYZ):        " << planeAngles << std::endl;
  std::cout << "plane angles(MyArmy):     " << planeAnglesInMyArmyAngles << std::endl;
  
  // Now lets rotate the plane a little bit
  std::cout << "==========================================================\n";
  std::cout << "rotating plane now!\n";
  std::cout << "==========================================================\n";
  
  Quaterniond planeRotated = AngleAxisd(-0.342, Vector3d::UnitY()) * planeAngles;
  
  planeAngles = planeRotated;
  planeAnglesInMyArmyAngles = planeRotated;
  
  std::cout << "new plane angles(ZYZ):     " << planeAngles << std::endl;
  std::cout << "new plane angles(MyArmy): " << planeAnglesInMyArmyAngles << std::endl;
  
  return 0;
}

Output:

vehicle angles(MyArmy):     1.57 -0.3  0.1
plane angles(ZYZ):          0.78474    0.5271 -0.513794
plane angles(MyArmy):     -0.206273  0.453463 -0.278617
==========================================================
rotating plane now!
==========================================================
new plane angles(ZYZ):      1.44358 0.366507 -1.23637
new plane angles(MyArmy):  -0.18648  0.117896 -0.347841

Additional reading

If you're want to get more idea about how Euler system work in Eigen see EulerSystem.

More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles

Template Parameters
_Scalar the scalar type, i.e. the type of the angles.
_System the EulerSystem to use, which represents the axes of rotation.
typedef AngleAxis< Scalar > AngleAxisType
typedef Matrix< Scalar, 3, 3 > Matrix3
typedef Quaternion< Scalar > QuaternionType
typedef _Scalar Scalar
typedef _System System
typedef Matrix< Scalar, 3, 1 > Vector3
Scalar & alpha ()
Scalar alpha () const
Vector3 & angles ()
const Vector3 & angles () const
Scalar & beta ()
Scalar beta () const
template<typename NewScalarType >
EulerAngles< NewScalarType, System > cast () const
EulerAngles ()
template<typename Derived >
EulerAngles (const MatrixBase< Derived > &other)
template<typename Derived >
EulerAngles (const RotationBase< Derived, 3 > &rot)
EulerAngles (const Scalar &alpha, const Scalar &beta, const Scalar &gamma)
EulerAngles (const Scalar *data)
Scalar & gamma ()
Scalar gamma () const
EulerAngles inverse () const
bool isApprox (const EulerAngles &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
operator QuaternionType () const
EulerAngles operator- () const
template<class Derived >
EulerAngles & operator= (const MatrixBase< Derived > &other)
template<typename Derived >
EulerAngles & operator= (const RotationBase< Derived, 3 > &rot)
Matrix3 toRotationMatrix () const
static Vector3 AlphaAxisVector ()
static Vector3 BetaAxisVector ()
static Vector3 GammaAxisVector ()

AngleAxisType

template<typename _Scalar , class _System >
typedef AngleAxis<Scalar> Eigen::EulerAngles< _Scalar, _System >::AngleAxisType

the equivalent angle-axis type

Matrix3

template<typename _Scalar , class _System >
typedef Matrix<Scalar,3,3> Eigen::EulerAngles< _Scalar, _System >::Matrix3

the equivalent rotation matrix type

QuaternionType

template<typename _Scalar , class _System >
typedef Quaternion<Scalar> Eigen::EulerAngles< _Scalar, _System >::QuaternionType

the equivalent quaternion type

Scalar

template<typename _Scalar , class _System >
typedef _Scalar Eigen::EulerAngles< _Scalar, _System >::Scalar

the scalar type of the angles

System

template<typename _Scalar , class _System >
typedef _System Eigen::EulerAngles< _Scalar, _System >::System

the EulerSystem to use, which represents the axes of rotation.

Vector3

template<typename _Scalar , class _System >
typedef Matrix<Scalar,3,1> Eigen::EulerAngles< _Scalar, _System >::Vector3

the equivalent 3 dimension vector type

EulerAngles() [1/5]

template<typename _Scalar , class _System >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( )
inline

Default constructor without initialization.

EulerAngles() [2/5]

template<typename _Scalar , class _System >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const Scalar & alpha,
const Scalar & beta,
const Scalar & gamma
)
inline

Constructs and initialize an EulerAngles (alpha, beta, gamma).

EulerAngles() [3/5]

template<typename _Scalar , class _System >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const Scalar * data )
inlineexplicit

Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma}

EulerAngles() [4/5]

template<typename _Scalar , class _System >
template<typename Derived >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const MatrixBase< Derived > & other )
inlineexplicit

Constructs and initializes an EulerAngles from either:

  • a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
  • a 3D vector expression representing Euler angles.
Note
If other is a 3x3 rotation matrix, the angles range rules will be as follow:
Alpha and gamma angles will be in the range [-PI, PI].
As for Beta angle:
  • If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
  • otherwise:
    • If the beta axis is positive, the beta angle will be in the range [0, PI]
    • If the beta axis is negative, the beta angle will be in the range [-PI, 0]

EulerAngles() [5/5]

template<typename _Scalar , class _System >
template<typename Derived >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const RotationBase< Derived, 3 > & rot )
inline

Constructs and initialize Euler angles from a rotation rot.

Note
If rot is an EulerAngles (even when it represented as RotationBase explicitly), angles ranges are undefined. Otherwise, alpha and gamma angles will be in the range [-PI, PI].
As for Beta angle:
  • If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
  • otherwise:
    • If the beta axis is positive, the beta angle will be in the range [0, PI]
    • If the beta axis is negative, the beta angle will be in the range [-PI, 0]

alpha() [1/2]

template<typename _Scalar , class _System >
Scalar& Eigen::EulerAngles< _Scalar, _System >::alpha ( )
inline
Returns
A read-write reference to the angle of the first angle.

alpha() [2/2]

template<typename _Scalar , class _System >
Scalar Eigen::EulerAngles< _Scalar, _System >::alpha ( ) const
inline
Returns
The value of the first angle.

AlphaAxisVector()

template<typename _Scalar , class _System >
static Vector3 Eigen::EulerAngles< _Scalar, _System >::AlphaAxisVector ( )
inlinestatic
Returns
the axis vector of the first (alpha) rotation

angles() [1/2]

template<typename _Scalar , class _System >
Vector3& Eigen::EulerAngles< _Scalar, _System >::angles ( )
inline
Returns
A read-write reference to the angle values stored in a vector (alpha, beta, gamma).

angles() [2/2]

template<typename _Scalar , class _System >
const Vector3& Eigen::EulerAngles< _Scalar, _System >::angles ( ) const
inline
Returns
The angle values stored in a vector (alpha, beta, gamma).

beta() [1/2]

template<typename _Scalar , class _System >
Scalar& Eigen::EulerAngles< _Scalar, _System >::beta ( )
inline
Returns
A read-write reference to the angle of the second angle.

beta() [2/2]

template<typename _Scalar , class _System >
Scalar Eigen::EulerAngles< _Scalar, _System >::beta ( ) const
inline
Returns
The value of the second angle.

BetaAxisVector()

template<typename _Scalar , class _System >
static Vector3 Eigen::EulerAngles< _Scalar, _System >::BetaAxisVector ( )
inlinestatic
Returns
the axis vector of the second (beta) rotation

cast()

template<typename _Scalar , class _System >
template<typename NewScalarType >
EulerAngles<NewScalarType, System> Eigen::EulerAngles< _Scalar, _System >::cast ( ) const
inline
Returns
*this with scalar type casted to NewScalarType

gamma() [1/2]

template<typename _Scalar , class _System >
Scalar& Eigen::EulerAngles< _Scalar, _System >::gamma ( )
inline
Returns
A read-write reference to the angle of the third angle.

gamma() [2/2]

template<typename _Scalar , class _System >
Scalar Eigen::EulerAngles< _Scalar, _System >::gamma ( ) const
inline
Returns
The value of the third angle.

GammaAxisVector()

template<typename _Scalar , class _System >
static Vector3 Eigen::EulerAngles< _Scalar, _System >::GammaAxisVector ( )
inlinestatic
Returns
the axis vector of the third (gamma) rotation

inverse()

template<typename _Scalar , class _System >
EulerAngles Eigen::EulerAngles< _Scalar, _System >::inverse ( ) const
inline
Returns
The Euler angles rotation inverse (which is as same as the negative), (-alpha, -beta, -gamma).

isApprox()

template<typename _Scalar , class _System >
bool Eigen::EulerAngles< _Scalar, _System >::isApprox ( const EulerAngles< _Scalar, _System > & other,
const RealScalar & prec = NumTraits<Scalar>::dummy_precision()
) const
inline
Returns
true if *this is approximately equal to other, within the precision determined by prec.
See also
MatrixBase::isApprox()

operator QuaternionType()

template<typename _Scalar , class _System >
Eigen::EulerAngles< _Scalar, _System >::operator QuaternionType ( ) const
inline

Convert the Euler angles to quaternion.

operator-()

template<typename _Scalar , class _System >
EulerAngles Eigen::EulerAngles< _Scalar, _System >::operator- ( ) const
inline
Returns
The Euler angles rotation negative (which is as same as the inverse), (-alpha, -beta, -gamma).

operator=() [1/2]

template<typename _Scalar , class _System >
template<class Derived >
EulerAngles& Eigen::EulerAngles< _Scalar, _System >::operator= ( const MatrixBase< Derived > & other )
inline

Set *this from either:

  • a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
  • a 3D vector expression representing Euler angles.

See EulerAngles(const MatrixBase<Derived, 3>&) for more information about angles ranges output.

operator=() [2/2]

template<typename _Scalar , class _System >
template<typename Derived >
EulerAngles& Eigen::EulerAngles< _Scalar, _System >::operator= ( const RotationBase< Derived, 3 > & rot )
inline

Set *this from a rotation.

See EulerAngles(const RotationBase<Derived, 3>&) for more information about angles ranges output.

toRotationMatrix()

template<typename _Scalar , class _System >
Matrix3 Eigen::EulerAngles< _Scalar, _System >::toRotationMatrix ( ) const
inline
Returns
an equivalent 3x3 rotation matrix.

The documentation for this class was generated from the following file: