Syntax
BlockExpression :
{
InnerAttribute*
Statements?
}
Statements :
Statement+
| Statement+ ExpressionWithoutBlock
| ExpressionWithoutBlock
A block expression, or block, is a control flow expression and anonymous namespace scope for items and variable declarations. As a control flow expression, a block sequentially executes its component non-item declaration statements and then its final optional expression. As an anonymous namespace scope, item declarations are only in scope inside the block itself and variables declared by let
statements are in scope from the next statement until the end of the block.
Blocks are written as {
, then any inner attributes, then statements, then an optional expression, and finally a }
. Statements are usually required to be followed by a semicolon, with two exceptions. Item declaration statements do not need to be followed by a semicolon. Expression statements usually require a following semicolon except if its outer expression is a flow control expression. Furthermore, extra semicolons between statements are allowed, but these semicolons do not affect semantics.
When evaluating a block expression, each statement, except for item declaration statements, is executed sequentially. Then the final expression is executed, if given.
The type of a block is the type of the final expression, or ()
if the final expression is omitted.
#![allow(unused)] fn main() { fn fn_call() {} let _: () = { fn_call(); }; let five: i32 = { fn_call(); 5 }; assert_eq!(5, five); }
Note: As a control flow expression, if a block expression is the outer expression of an expression statement, the expected type is
()
unless it is followed immediately by a semicolon.
Blocks are always value expressions and evaluate the last expression in value expression context. This can be used to force moving a value if really needed. For example, the following example fails on the call to consume_self
because the struct was moved out of s
in the block expression.
#![allow(unused)] fn main() { struct Struct; impl Struct { fn consume_self(self) {} fn borrow_self(&self) {} } fn move_by_block_expression() { let s = Struct; // Move the value out of `s` in the block expression. (&{ s }).borrow_self(); // Fails to execute because `s` is moved out of. s.consume_self(); } }
async
blocksSyntax
AsyncBlockExpression :
async
move
? BlockExpression
An async block is a variant of a block expression which evaluates to a future. The final expression of the block, if present, determines the result value of the future.
Executing an async block is similar to executing a closure expression: its immediate effect is to produce and return an anonymous type. Whereas closures return a type that implements one or more of the std::ops::Fn
traits, however, the type returned for an async block implements the std::future::Future
trait. The actual data format for this type is unspecified.
Note: The future type that rustc generates is roughly equivalent to an enum with one variant per
await
point, where each variant stores the data needed to resume from its corresponding point.
Edition differences: Async blocks are only available beginning with Rust 2018.
Async blocks capture variables from their environment using the same capture modes as closures. Like closures, when written async { .. }
the capture mode for each variable will be inferred from the content of the block. async move { .. }
blocks however will move all referenced variables into the resulting future.
Because async blocks construct a future, they define an async context which can in turn contain await
expressions. Async contexts are established by async blocks as well as the bodies of async functions, whose semantics are defined in terms of async blocks.
Async blocks act like a function boundary, much like closures. Therefore, the ?
operator and return
expressions both affect the output of the future, not the enclosing function or other context. That is, return <expr>
from within a closure will return the result of <expr>
as the output of the future. Similarly, if <expr>?
propagates an error, that error is propagated as the result of the future.
Finally, the break
and continue
keywords cannot be used to branch out from an async block. Therefore the following is illegal:
#![allow(unused)] fn main() { loop { async move { break; // This would break out of the loop. } } }
unsafe
blocksSyntax
UnsafeBlockExpression :
unsafe
BlockExpression
See unsafe
block for more information on when to use unsafe
A block of code can be prefixed with the unsafe
keyword to permit unsafe operations. Examples:
#![allow(unused)] fn main() { unsafe { let b = [13u8, 17u8]; let a = &b[0] as *const u8; assert_eq!(*a, 13); assert_eq!(*a.offset(1), 17); } unsafe fn an_unsafe_fn() -> i32 { 10 } let a = unsafe { an_unsafe_fn() }; }
Inner attributes are allowed directly after the opening brace of a block expression in the following situations:
loop
, while
, while let
, and for
).The attributes that have meaning on a block expression are cfg
and the lint check attributes.
For example, this function returns true
on unix platforms and false
on other platforms.
#![allow(unused)] fn main() { fn is_unix_platform() -> bool { #[cfg(unix)] { true } #[cfg(not(unix))] { false } } }
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/reference/expressions/block-expr.html