Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
tf.raw_ops.CropAndResizeGradBoxes( grads, image, boxes, box_ind, method='bilinear', name=None )
Args | ||
---|---|---|
grads | A Tensor of type float32 . A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] . | |
image | A Tensor . Must be one of the following types: uint8 , uint16 , int8 , int16 , int32 , int64 , half , float32 , float64 . A 4-D tensor of shape [batch, image_height, image_width, depth] . Both image_height and image_width need to be positive. | |
boxes | A Tensor of type float32 . A 2-D tensor of shape [num_boxes, 4] . The i -th row of the tensor specifies the coordinates of a box in the box_ind[i] image and is specified in normalized coordinates [y1, x1, y2, x2] . A normalized coordinate value of y is mapped to the image coordinate at y * (image_height - 1) , so as the [0, 1] interval of normalized image height is mapped to [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the [0, 1]range are allowed, in which case we use extrapolation_valueto extrapolate the input image values. </td> </tr><tr> <td> box_ind</td> <td> A Tensorof type int32. A 1-D tensor of shape [num_boxes]with int32 values in [0, batch). The value of box_ind[i]specifies the image that the i-th box refers to. </td> </tr><tr> <td> method</td> <td> An optional stringfrom: "bilinear". Defaults to "bilinear". A string specifying the interpolation method. Only 'bilinear' is supported for now. </td> </tr><tr> <td> name` | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of type float32 . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/CropAndResizeGradBoxes