tf.contrib.feature_column.sequence_categorical_column_with_hash_bucket( key, hash_bucket_size, dtype=tf.string )
Defined in tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column.py
.
A sequence of categorical terms where ids are set by hashing.
Pass this to embedding_column
or indicator_column
to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.
Example:
tokens = sequence_categorical_column_with_hash_bucket( 'tokens', hash_bucket_size=1000) tokens_embedding = embedding_column(tokens, dimension=10) columns = [tokens_embedding] features = tf.parse_example(..., features=make_parse_example_spec(columns)) input_layer, sequence_length = sequence_input_layer(features, columns) rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size) outputs, state = tf.nn.dynamic_rnn( rnn_cell, inputs=input_layer, sequence_length=sequence_length)
key
: A unique string identifying the input feature.hash_bucket_size
: An int > 1. The number of buckets.dtype
: The type of features. Only string and integer types are supported.A _SequenceCategoricalColumn
.
ValueError
: hash_bucket_size
is not greater than 1.ValueError
: dtype
is neither string nor integer.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/feature_column/sequence_categorical_column_with_hash_bucket