IdTableWithHashBuckets
Inherits From: LookupInterface
Defined in tensorflow/python/ops/lookup_ops.py.
String to Id table wrapper that assigns out-of-vocabulary keys to buckets.
For example, if an instance of IdTableWithHashBuckets is initialized with a string-to-id table that maps:
emerson -> 0lake -> 1palmer -> 2The IdTableWithHashBuckets object will performs the following mapping:
emerson -> 0lake -> 1palmer -> 2<other term> -> bucket_id, where bucket_id will be between 3 and 3 + num_oov_buckets - 1, calculated by: hash(<term>) % num_oov_buckets + vocab_size
If input_tensor is ["emerson", "lake", "palmer", "king", "crimson"], the lookup result is [0, 1, 2, 4, 7].
If table is None, only out-of-vocabulary buckets are used.
Example usage:
num_oov_buckets = 3
input_tensor = tf.constant(["emerson", "lake", "palmer", "king", "crimnson"])
table = tf.IdTableWithHashBuckets(
tf.HashTable(tf.TextFileIdTableInitializer(filename), default_value),
num_oov_buckets)
out = table.lookup(input_tensor).
table.init.run()
print(out.eval())
The hash function used for generating out-of-vocabulary buckets ID is handled by hasher_spec.
initThe table initialization op.
key_dtypeThe table key dtype.
nameThe name of the table.
table_refReturns the table_ref of the underlying table, if one exists.
Only use the table_ref directly if you know what you are doing. The table_ref does not have the "hash bucket" functionality, as that is provided by this class.
One possible use of the table_ref is subtokenization, i.e. ops which dynamically decompose tokens into subtokens based on the contents of the table_ref.
the underlying table_ref, or None if there is no underlying table
value_dtypeThe table value dtype.
__init____init__(
table,
num_oov_buckets,
hasher_spec=tf.contrib.lookup.FastHashSpec,
name=None,
key_dtype=None
)
Construct a IdTableWithHashBuckets object.
table: Table that maps tf.string or tf.int64 keys to tf.int64 ids.num_oov_buckets: Number of buckets to use for out-of-vocabulary keys.hasher_spec: A HasherSpec to specify the hash function to use for assignation of out-of-vocabulary buckets (optional).name: A name for the operation (optional).key_dtype: Data type of keys passed to lookup. Defaults to table.key_dtype if table is specified, otherwise tf.string. Must be string or integer, and must be castable to table.key_dtype.ValueError: when table in None and num_oov_buckets is not positive.TypeError: when hasher_spec is invalid.lookuplookup(
keys,
name=None
)
Looks up keys in the table, outputs the corresponding values.
It assigns out-of-vocabulary keys to buckets based in their hashes.
keys: Keys to look up. May be either a SparseTensor or dense Tensor.name: Optional name for the op.A SparseTensor if keys are sparse, otherwise a dense Tensor.
TypeError: when keys doesn't match the table key data type.sizesize(name=None)
Compute the number of elements in this table.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/lookup/IdTableWithHashBuckets