tf.contrib.lookup.index_table_from_file( vocabulary_file=None, num_oov_buckets=0, vocab_size=None, default_value=-1, hasher_spec=tf.contrib.lookup.FastHashSpec, key_dtype=tf.string, name=None, key_column_index=TextFileIndex.WHOLE_LINE, value_column_index=TextFileIndex.LINE_NUMBER, delimiter='\t' )
Defined in tensorflow/python/ops/lookup_ops.py
.
Returns a lookup table that converts a string tensor into int64 IDs.
This operation constructs a lookup table to convert tensor of strings into int64 IDs. The mapping can be initialized from a vocabulary file specified in vocabulary_file
, where the whole line is the key and the zero-based line number is the ID.
Any lookup of an out-of-vocabulary token will return a bucket ID based on its hash if num_oov_buckets
is greater than zero. Otherwise it is assigned the default_value
. The bucket ID range is [vocabulary size, vocabulary size + num_oov_buckets - 1]
.
The underlying table must be initialized by calling tf.tables_initializer.run()
or table.init.run()
once.
To specify multi-column vocabulary files, use key_column_index and value_column_index and delimiter.
delimiter
.Sample Usages:
If we have a vocabulary file "test.txt" with the following content:
emerson lake palmer
features = tf.constant(["emerson", "lake", "and", "palmer"]) table = tf.contrib.lookup.index_table_from_file( vocabulary_file="test.txt", num_oov_buckets=1) ids = table.lookup(features) ... tf.tables_initializer().run() ids.eval() ==> [0, 1, 3, 2] # where 3 is the out-of-vocabulary bucket
vocabulary_file
: The vocabulary filename, may be a constant scalar Tensor
.num_oov_buckets
: The number of out-of-vocabulary buckets.vocab_size
: Number of the elements in the vocabulary, if known.default_value
: The value to use for out-of-vocabulary feature values. Defaults to -1.hasher_spec
: A HasherSpec
to specify the hash function to use for assignation of out-of-vocabulary buckets.key_dtype
: The key
data type.name
: A name for this op (optional).key_column_index
: The column index from the text file to get the key
values from. The default is to use the whole line content.value_column_index
: The column index from the text file to get the value
values from. The default is to use the line number, starting from zero.delimiter
: The delimiter to separate fields in a line.The lookup table to map a key_dtype
Tensor
to index int64
Tensor
.
ValueError
: If vocabulary_file
is not set.ValueError
: If num_oov_buckets
is negative or vocab_size
is not greater than zero.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/lookup/index_table_from_file