Defined in header <algorithm> | ||
|---|---|---|
| Call signature | ||
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
std::indirect_binary_predicate<
std::projected<I, Proj>,
std::projected<I, Proj>> Pred = ranges::equal_to >
constexpr I
adjacent_find( I first, S last, Pred pred = {}, Proj proj = {} );
| (1) | (since C++20) |
template< ranges::forward_range R, class Proj = std::identity,
std::indirect_binary_predicate<
std::projected<ranges::iterator_t<R>, Proj>,
std::projected<ranges::iterator_t<R>, Proj>> Pred = ranges::equal_to >
constexpr ranges::borrowed_iterator_t<R>
adjacent_find( R&& r, Pred pred = {}, Proj proj = {} );
| (2) | (since C++20) |
Searches the range [first, last) for two consecutive equal elements.
pred (after projecting with the projection proj).r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
| first, last | - | the range of elements to examine |
| r | - | the range of the elements to examine |
| pred | - | predicate to apply to the projected elements |
| proj | - | projection to apply to the elements |
An iterator to the first of the first pair of identical elements, that is, the first iterator it such that bool(std::invoke(pred, std::invoke(proj1, *it), std::invoke(proj, *(it + 1)))) is true.
If no such elements are found, an iterator equal to last is returned.
Exactly min((result - first) + 1, (last - first) - 1) applications of the predicate and projection where result is the return value.
struct adjacent_find_fn
{
template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
std::indirect_binary_predicate<
std::projected<I, Proj>,
std::projected<I, Proj>> Pred = ranges::equal_to>
constexpr I operator()(I first, S last, Pred pred = {}, Proj proj = {}) const
{
if (first == last)
return first;
auto next = ranges::next(first);
for (; next != last; ++next, ++first)
if (std::invoke(pred, std::invoke(proj, *first), std::invoke(proj, *next)))
return first;
return next;
}
template<ranges::forward_range R, class Proj = std::identity,
std::indirect_binary_predicate<
std::projected<ranges::iterator_t<R>, Proj>,
std::projected<ranges::iterator_t<R>, Proj>> Pred = ranges::equal_to>
constexpr ranges::borrowed_iterator_t<R>
operator()(R&& r, Pred pred = {}, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj));
}
};
inline constexpr adjacent_find_fn adjacent_find; |
#include <algorithm>
#include <functional>
#include <iostream>
int main()
{
const auto v = {0, 1, 2, 3, 40, 40, 41, 41, 5}; /*
^^ ^^ */
namespace ranges = std::ranges;
if (auto it = ranges::adjacent_find(v.begin(), v.end()); it == v.end())
std::cout << "No matching adjacent elements\n";
else
std::cout << "The first adjacent pair of equal elements is at ["
<< ranges::distance(v.begin(), it) << "] == " << *it << '\n';
if (auto it = ranges::adjacent_find(v, ranges::greater()); it == v.end())
std::cout << "The entire vector is sorted in ascending order\n";
else
std::cout << "The last element in the non-decreasing subsequence is at ["
<< ranges::distance(v.begin(), it) << "] == " << *it << '\n';
}Output:
The first adjacent pair of equal elements is at [4] == 40 The last element in the non-decreasing subsequence is at [7] == 41
|
(C++20) | removes consecutive duplicate elements in a range (niebloid) |
| finds the first two adjacent items that are equal (or satisfy a given predicate) (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/adjacent_find