Defined in header <algorithm> | ||
|---|---|---|
| Call signature | ||
template< std::input_iterator I, std::sentinel_for<I> S,
class T, class Proj = std::identity >
requires std::indirect_binary_predicate<
ranges::equal_to, std::projected<I, Proj>, const T*>
constexpr std::iter_difference_t<I>
count( I first, S last, const T& value, Proj proj = {} );
| (1) | (since C++20) |
template< ranges::input_range R, class T, class Proj = std::identity >
requires std::indirect_binary_predicate<
ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexpr ranges::range_difference_t<R>
count( R&& r, const T& value, Proj proj = {} );
| (2) | (since C++20) |
template< std::input_iterator I, std::sentinel_for<I> S,
class Proj = std::identity,
std::indirect_unary_predicate<std::projected<I, Proj>> Pred >
constexpr std::iter_difference_t<I>
count_if( I first, S last, Pred pred, Proj proj = {} );
| (3) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity,
std::indirect_unary_predicate<
std::projected<ranges::iterator_t<R>, Proj>> Pred >
constexpr ranges::range_difference_t<R>
count_if( R&& r, Pred pred, Proj proj = {} );
| (4) | (since C++20) |
Returns the number of elements in the range [first, last) satisfying specific criteria.
value.p returns true.r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
| first, last | - | the range of elements to examine |
| r | - | the range of the elements to examine |
| value | - | the value to search for |
| pred | - | predicate to apply to the projected elements |
| proj | - | projection to apply to the elements |
Number of elements satisfying the condition.
Exactly last - first comparisons and projection.
For the number of elements in the range without any additional criteria, see std::ranges::distance.
| count |
|---|
struct count_fn
{
template<std::input_iterator I, std::sentinel_for<I> S,
class T, class Proj = std::identity>
requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>,
const T*>
constexpr std::iter_difference_t<I>
operator()(I first, S last, const T& value, Proj proj = {}) const
{
std::iter_difference_t<I> counter = 0;
for (; first != last; ++first)
if (std::invoke(proj, *first) == value)
++counter;
return counter;
}
template<ranges::input_range R, class T, class Proj = std::identity>
requires std::indirect_binary_predicate<ranges::equal_to,
std::projected<ranges::iterator_t<R>, Proj>,
const T*>
constexpr ranges::range_difference_t<R>
operator()(R&& r, const T& value, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj));
}
};
inline constexpr count_fn count; |
| count_if |
struct count_if_fn
{
template<std::input_iterator I, std::sentinel_for<I> S,
class Proj = std::identity,
std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
constexpr std::iter_difference_t<I>
operator()(I first, S last, Pred pred, Proj proj = {}) const
{
std::iter_difference_t<I> counter = 0;
for (; first != last; ++first)
if (std::invoke(pred, std::invoke(proj, *first)))
++counter;
return counter;
}
template<ranges::input_range R, class Proj = std::identity,
std::indirect_unary_predicate<
std::projected<ranges::iterator_t<R>, Proj>> Pred>
constexpr ranges::range_difference_t<R>
operator()(R&& r, Pred pred, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r),
std::ref(pred), std::ref(proj));
}
};
inline constexpr count_if_fn count_if; |
#include <algorithm>
#include <iostream>
#include <vector>
int main()
{
std::vector<int> v {1, 2, 3, 4, 4, 3, 7, 8, 9, 10};
namespace ranges = std::ranges;
// determine how many integers in a std::vector match a target value.
int target1 = 3;
int target2 = 5;
int num_items1 = ranges::count(v.begin(), v.end(), target1);
int num_items2 = ranges::count(v, target2);
std::cout << "number: " << target1 << " count: " << num_items1 << '\n';
std::cout << "number: " << target2 << " count: " << num_items2 << '\n';
// use a lambda expression to count elements divisible by 3.
int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i) {return i % 3 == 0;});
std::cout << "number divisible by three: " << num_items3 << '\n';
// use a lambda expression to count elements divisible by 11.
int num_items11 = ranges::count_if(v, [](int i) {return i % 11 == 0;});
std::cout << "number divisible by eleven: " << num_items11 << '\n';
}Output:
number: 3 count: 2 number: 5 count: 0 number divisible by three: 3 number divisible by eleven: 0
|
(C++20) | returns the distance between an iterator and a sentinel, or between the beginning and end of a range (niebloid) |
|
(C++20) | creates a subrange from an iterator and a count (customization point object) |
|
(C++20) | a view that consists of the elements of a range that satisfies a predicate (class template) (range adaptor object) |
| returns the number of elements satisfying specific criteria (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/count