Defined in header <cmath> | ||
---|---|---|
float hypot ( float x, float y ); float hypotf( float x, float y ); | (1) | (since C++11) |
double hypot ( double x, double y ); | (2) | (since C++11) |
long double hypot ( long double x, long double y ); long double hypotl( long double x, long double y ); | (3) | (since C++11) |
Promoted hypot ( Arithmetic1 x, Arithmetic2 y ); | (4) | (since C++11) |
float hypot ( float x, float y, float z ); | (5) | (since C++17) |
double hypot ( double x, double y, double z ); | (6) | (since C++17) |
long double hypot ( long double x, long double y, long double z ); | (7) | (since C++17) |
Promoted hypot ( Arithmetic1 x, Arithmetic2 y, Arithmetic3 z ); | (8) | (since C++17) |
x
and y
, without undue overflow or underflow at intermediate stages of the computation.double
. If any other argument is long double
, then the return type is long double
, otherwise it is double
.x
, y
, and z
, without undue overflow or underflow at intermediate stages of the computation.double
. If any other argument is long double
, then the return type is long double
, otherwise it is double
.The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length x
and y
, or the distance of the point (x,y)
from the origin (0,0)
, or the magnitude of a complex number x+iy
.
The value computed by the three-argument version of this function is the distance of the point (x,y,z)
from the origin (0,0,0)
.
x, y, z | - | values of floating-point or integral types |
If a range error due to overflow occurs, +HUGE_VAL
, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
hypot(x, y)
, hypot(y, x)
, and hypot(x, -y)
are equivalent hypot(x,y)
is equivalent to fabs
called with the non-zero argument hypot(x,y)
returns +∞ even if the other argument is NaN Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD.
std::hypot(x, y)
is equivalent to std::abs(std::complex<double>(x,y))
.
POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
Distance between two points
| (since C++17) |
#include <iostream> #include <cmath> #include <cerrno> #include <cfenv> #include <cfloat> #include <cstring> // #pragma STDC FENV_ACCESS ON int main() { // typical usage std::cout << "(1,1) cartesian is (" << std::hypot(1,1) << ',' << std::atan2(1,1) << ") polar\n"; struct Point3D { float x, y, z; } a{3.14,2.71,9.87}, b{1.14,5.71,3.87}; // C++17 has 3-argumnet hypot overload: std::cout << "distance(a,b) = " << std::hypot(a.x-b.x,a.y-b.y,a.z-b.z) << '\n'; // special values std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n'; if (errno == ERANGE) std::cout << " errno = ERANGE " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Output:
(1,1) cartesian is (1.41421,0.785398) polar distance(a,b) = 7 hypot(NAN,INFINITY) = inf hypot(DBL_MAX,DBL_MAX) = inf errno = ERANGE Numerical result out of range FE_OVERFLOW raised
(C++11)(C++11) | raises a number to the given power (\(\small{x^y}\)xy) (function) |
(C++11)(C++11) | computes square root (\(\small{\sqrt{x} }\)√x) (function) |
(C++11)(C++11)(C++11) | computes cubic root (\(\small{\sqrt[3]{x} }\)3√x) (function) |
returns the magnitude of a complex number (function template) |
|
C documentation for hypot |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/hypot