This module provides support for:
#include <Eigen/Geometry>
Global aligned box typedefs | |
class | Eigen::AlignedBox< _Scalar, _AmbientDim > |
An axis aligned box. More... |
|
class | Eigen::AngleAxis< _Scalar > |
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More... |
|
class | Eigen::Homogeneous< MatrixType, _Direction > |
Expression of one (or a set of) homogeneous vector(s) More... |
|
class | Eigen::Hyperplane< _Scalar, _AmbientDim, _Options > |
A hyperplane. More... |
|
class | Eigen::Map< const Quaternion< _Scalar >, _Options > |
Quaternion expression mapping a constant memory buffer. More... |
|
class | Eigen::Map< Quaternion< _Scalar >, _Options > |
Expression of a quaternion from a memory buffer. More... |
|
class | Eigen::ParametrizedLine< _Scalar, _AmbientDim, _Options > |
A parametrized line. More... |
|
class | Eigen::Quaternion< _Scalar, _Options > |
The quaternion class used to represent 3D orientations and rotations. More... |
|
class | Eigen::QuaternionBase< Derived > |
Base class for quaternion expressions. More... |
|
class | Eigen::Rotation2D< _Scalar > |
Represents a rotation/orientation in a 2 dimensional space. More... |
|
class | Eigen::Transform< _Scalar, _Dim, _Mode, _Options > |
Represents an homogeneous transformation in a N dimensional space. More... |
|
class | Eigen::Translation< _Scalar, _Dim > |
Represents a translation transformation. More... |
|
class | Eigen::UniformScaling< _Scalar > |
Represents a generic uniform scaling transformation. More... |
|
typedef AngleAxis< double > | Eigen::AngleAxisd |
typedef AngleAxis< float > | Eigen::AngleAxisf |
typedef Quaternion< double > | Eigen::Quaterniond |
typedef Quaternion< float > | Eigen::Quaternionf |
typedef Map< Quaternion< double >, Aligned > | Eigen::QuaternionMapAlignedd |
typedef Map< Quaternion< float >, Aligned > | Eigen::QuaternionMapAlignedf |
typedef Map< Quaternion< double >, 0 > | Eigen::QuaternionMapd |
typedef Map< Quaternion< float >, 0 > | Eigen::QuaternionMapf |
typedef Rotation2D< double > | Eigen::Rotation2Dd |
typedef Rotation2D< float > | Eigen::Rotation2Df |
template<typename OtherDerived > | |
PlainObject | Eigen::MatrixBase< Derived >::cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
const CrossReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
PlainObject | Eigen::MatrixBase< Derived >::cross3 (const MatrixBase< OtherDerived > &other) const |
Matrix< Scalar, 3, 1 > | Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const |
const HNormalizedReturnType | Eigen::MatrixBase< Derived >::hnormalized () const |
homogeneous normalization More... |
|
const HNormalizedReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::hnormalized () const |
column or row-wise homogeneous normalization More... |
|
HomogeneousReturnType | Eigen::MatrixBase< Derived >::homogeneous () const |
HomogeneousReturnType | Eigen::VectorwiseOp< ExpressionType, Direction >::homogeneous () const |
template<typename Derived , typename OtherDerived > | |
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type | Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true) |
Returns the transformation between two point sets. More... |
|
PlainObject | Eigen::MatrixBase< Derived >::unitOrthogonal (void) const |
typedef AngleAxis<double> Eigen::AngleAxisd |
double precision angle-axis type
typedef AngleAxis<float> Eigen::AngleAxisf |
single precision angle-axis type
typedef Quaternion<double> Eigen::Quaterniond |
double precision quaternion type
typedef Quaternion<float> Eigen::Quaternionf |
single precision quaternion type
typedef Map<Quaternion<double>, Aligned> Eigen::QuaternionMapAlignedd |
Map a 16-byte aligned array of double precision scalars as a quaternion
typedef Map<Quaternion<float>, Aligned> Eigen::QuaternionMapAlignedf |
Map a 16-byte aligned array of single precision scalars as a quaternion
typedef Map<Quaternion<double>, 0> Eigen::QuaternionMapd |
Map an unaligned array of double precision scalars as a quaternion
typedef Map<Quaternion<float>, 0> Eigen::QuaternionMapf |
Map an unaligned array of single precision scalars as a quaternion
typedef Rotation2D<double> Eigen::Rotation2Dd |
double precision 2D rotation type
typedef Rotation2D<float> Eigen::Rotation2Df |
single precision 2D rotation type
| inline |
This is defined in the Geometry module.
#include <Eigen/Geometry>
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
With complex numbers, the cross product is implemented as \( (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\)
const VectorwiseOp< ExpressionType, Direction >::CrossReturnType Eigen::VectorwiseOp< ExpressionType, Direction >::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const |
This is defined in the Geometry module.
#include <Eigen/Geometry>
The referenced matrix must have one dimension equal to 3. The result matrix has the same dimensions than the referenced one.
| inline |
This is defined in the Geometry module.
#include <Eigen/Geometry>
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
| inline |
This is defined in the Geometry module.
#include <Eigen/Geometry>
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
Vector3f ea = mat.eulerAngles(2, 0, 2);
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
mat == AngleAxisf(ea[0], Vector3f::UnitZ()) * AngleAxisf(ea[1], Vector3f::UnitX()) * AngleAxisf(ea[2], Vector3f::UnitZ());
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
| inline |
homogeneous normalization
This is defined in the Geometry module.
#include <Eigen/Geometry>
*this
divided by that last coefficient.This can be used to convert homogeneous coordinates to affine coordinates.
It is essentially a shortcut for:
this->head(this->size()-1)/this->coeff(this->size()-1);
Example:
Vector4d v = Vector4d::Random(); Projective3d P(Matrix4d::Random()); cout << "v = " << v.transpose() << "]^T" << endl; cout << "v.hnormalized() = " << v.hnormalized().transpose() << "]^T" << endl; cout << "P*v = " << (P*v).transpose() << "]^T" << endl; cout << "(P*v).hnormalized() = " << (P*v).hnormalized().transpose() << "]^T" << endl;
Output:
v = 0.68 -0.211 0.566 0.597]^T v.hnormalized() = 1.14 -0.354 0.949]^T P*v = 0.663 -0.16 -0.13 0.91]^T (P*v).hnormalized() = 0.729 -0.176 -0.143]^T
| inline |
column or row-wise homogeneous normalization
This is defined in the Geometry module.
#include <Eigen/Geometry>
*this
divided by the last coefficient of each column (or row).This can be used to convert homogeneous coordinates to affine coordinates.
It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of *this
.
Example:
Matrix4Xd M = Matrix4Xd::Random(4,5); Projective3d P(Matrix4d::Random()); cout << "The matrix M is:" << endl << M << endl << endl; cout << "M.colwise().hnormalized():" << endl << M.colwise().hnormalized() << endl << endl; cout << "P*M:" << endl << P*M << endl << endl; cout << "(P*M).colwise().hnormalized():" << endl << (P*M).colwise().hnormalized() << endl << endl;
Output:
The matrix M is: 0.68 0.823 -0.444 -0.27 0.271 -0.211 -0.605 0.108 0.0268 0.435 0.566 -0.33 -0.0452 0.904 -0.717 0.597 0.536 0.258 0.832 0.214 M.colwise().hnormalized(): 1.14 1.53 -1.72 -0.325 1.27 -0.354 -1.13 0.419 0.0322 2.03 0.949 -0.614 -0.175 1.09 -3.35 P*M: 0.186 -0.589 0.369 1.33 -1.23 -0.871 -0.337 0.127 -0.715 0.091 -0.158 -0.0104 0.312 0.429 -0.478 0.992 0.777 -0.373 0.468 -0.651 (P*M).colwise().hnormalized(): 0.188 -0.759 -0.989 2.85 1.89 -0.877 -0.433 -0.342 -1.53 -0.14 -0.16 -0.0134 -0.837 0.915 0.735
| inline |
This is defined in the Geometry module.
#include <Eigen/Geometry>
This can be used to convert affine coordinates to homogeneous coordinates.
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Example:
Vector3d v = Vector3d::Random(), w; Projective3d P(Matrix4d::Random()); cout << "v = [" << v.transpose() << "]^T" << endl; cout << "h.homogeneous() = [" << v.homogeneous().transpose() << "]^T" << endl; cout << "(P * v.homogeneous()) = [" << (P * v.homogeneous()).transpose() << "]^T" << endl; cout << "(P * v.homogeneous()).hnormalized() = [" << (P * v.homogeneous()).eval().hnormalized().transpose() << "]^T" << endl;
Output:
v = [ 0.68 -0.211 0.566]^T h.homogeneous() = [ 0.68 -0.211 0.566 1]^T (P * v.homogeneous()) = [ 1.27 0.772 0.0154 -0.419]^T (P * v.homogeneous()).hnormalized() = [ -3.03 -1.84 -0.0367]^T
| inline |
This is defined in the Geometry module.
#include <Eigen/Geometry>
This can be used to convert affine coordinates to homogeneous coordinates.
Example:
Matrix3Xd M = Matrix3Xd::Random(3,5); Projective3d P(Matrix4d::Random()); cout << "The matrix M is:" << endl << M << endl << endl; cout << "M.colwise().homogeneous():" << endl << M.colwise().homogeneous() << endl << endl; cout << "P * M.colwise().homogeneous():" << endl << P * M.colwise().homogeneous() << endl << endl; cout << "P * M.colwise().homogeneous().hnormalized(): " << endl << (P * M.colwise().homogeneous()).colwise().hnormalized() << endl << endl;
Output:
The matrix M is: 0.68 0.597 -0.33 0.108 -0.27 -0.211 0.823 0.536 -0.0452 0.0268 0.566 -0.605 -0.444 0.258 0.904 M.colwise().homogeneous(): 0.68 0.597 -0.33 0.108 -0.27 -0.211 0.823 0.536 -0.0452 0.0268 0.566 -0.605 -0.444 0.258 0.904 1 1 1 1 1 P * M.colwise().homogeneous(): 0.0832 -0.477 -1.21 -0.545 -0.452 0.998 0.779 0.695 0.894 0.277 -0.271 -0.608 -0.895 -0.544 -0.874 -0.728 -0.551 0.202 -0.21 -0.469 P * M.colwise().homogeneous().hnormalized(): -0.114 0.866 -6 2.6 0.962 -1.37 -1.41 3.44 -4.27 -0.591 0.373 1.1 -4.43 2.6 1.86
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool |
with_scaling = true | ||
) |
Returns the transformation between two point sets.
This is defined in the Geometry module.
#include <Eigen/Geometry>
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters \( c, \mathbf{R}, \) and \( \mathbf{t} \) such that
\begin{align*} \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 \end{align*}
is minimized.
The algorithm is based on the analysis of the covariance matrix \( \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \) of the input point sets \( \mathbf{x} \) and \( \mathbf{y} \) where \(d\) is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of \(O(d^3)\) though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of \(O(dm)\) when the input point sets have dimension \(d \times m\).
Currently the method is working only for floating point matrices.
src | Source points \( \mathbf{x} = \left( x_1, \hdots, x_n \right) \). |
dst | Destination points \( \mathbf{y} = \left( y_1, \hdots, y_n \right) \). |
with_scaling | Sets \( c=1 \) when false is passed. |
\begin{align*} T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \end{align*}
minimizing the residual above. This transformation is always returned as an Eigen::Matrix.
| inline |
This is defined in the Geometry module.
#include <Eigen/Geometry>
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().
© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/group__Geometry__Module.html