The pointer-sized signed integer type.
The size of this primitive is how many bytes it takes to reference any location in memory. For example, on a 32 bit target, this is 4 bytes and on a 64 bit target, this is 8 bytes.
impl isize
[src]
pub const MIN: isize
[src]1.43.0
The smallest value that can be represented by this integer type.
Basic usage:
assert_eq!(isize::MIN, -9223372036854775808);
pub const MAX: isize
[src]1.43.0
The largest value that can be represented by this integer type.
Basic usage:
assert_eq!(isize::MAX, 9223372036854775807);
pub fn from_str_radix(src: &str, radix: u32) -> Result<isize, ParseIntError>
[src]
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
or -
sign followed by digits. Leading and trailing whitespace represent an error. Digits are a subset of these characters, depending on radix
:
0-9
a-z
A-Z
This function panics if radix
is not in the range from 2 to 36.
Basic usage:
assert_eq!(isize::from_str_radix("A", 16), Ok(10));
pub const fn count_ones(self) -> u32
[src]
Returns the number of ones in the binary representation of self
.
Basic usage:
let n = 0b100_0000isize; assert_eq!(n.count_ones(), 1);
pub const fn count_zeros(self) -> u32
[src]
Returns the number of zeros in the binary representation of self
.
Basic usage:
assert_eq!(isize::MAX.count_zeros(), 1);
pub const fn leading_zeros(self) -> u32
[src]
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
let n = -1isize; assert_eq!(n.leading_zeros(), 0);
pub const fn trailing_zeros(self) -> u32
[src]
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
let n = -4isize; assert_eq!(n.trailing_zeros(), 2);
pub const fn leading_ones(self) -> u32
[src]1.46.0
Returns the number of leading ones in the binary representation of self
.
Basic usage:
let n = -1isize; assert_eq!(n.leading_ones(), 64);
pub const fn trailing_ones(self) -> u32
[src]1.46.0
Returns the number of trailing ones in the binary representation of self
.
Basic usage:
let n = 3isize; assert_eq!(n.trailing_ones(), 2);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn rotate_left(self, n: u32) -> isize
[src]
Shifts the bits to the left by a specified amount, n
, wrapping the truncated bits to the end of the resulting integer.
Please note this isn't the same operation as the <<
shifting operator!
Basic usage:
let n = 0xaa00000000006e1isize; let m = 0x6e10aa; assert_eq!(n.rotate_left(12), m);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn rotate_right(self, n: u32) -> isize
[src]
Shifts the bits to the right by a specified amount, n
, wrapping the truncated bits to the beginning of the resulting integer.
Please note this isn't the same operation as the >>
shifting operator!
Basic usage:
let n = 0x6e10aaisize; let m = 0xaa00000000006e1; assert_eq!(n.rotate_right(12), m);
pub const fn swap_bytes(self) -> isize
[src]
Reverses the byte order of the integer.
Basic usage:
let n = 0x1234567890123456isize; let m = n.swap_bytes(); assert_eq!(m, 0x5634129078563412);
pub const fn reverse_bits(self) -> isize
[src]1.37.0
Reverses the bit pattern of the integer.
Basic usage:
let n = 0x1234567890123456isize; let m = n.reverse_bits(); assert_eq!(m, 0x6a2c48091e6a2c48);
pub const fn from_be(x: isize) -> isize
[src]
Converts an integer from big endian to the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Basic usage:
let n = 0x1Aisize; if cfg!(target_endian = "big") { assert_eq!(isize::from_be(n), n) } else { assert_eq!(isize::from_be(n), n.swap_bytes()) }
pub const fn from_le(x: isize) -> isize
[src]
Converts an integer from little endian to the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Basic usage:
let n = 0x1Aisize; if cfg!(target_endian = "little") { assert_eq!(isize::from_le(n), n) } else { assert_eq!(isize::from_le(n), n.swap_bytes()) }
pub const fn to_be(self) -> isize
[src]
Converts self
to big endian from the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Basic usage:
let n = 0x1Aisize; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }
pub const fn to_le(self) -> isize
[src]
Converts self
to little endian from the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Basic usage:
let n = 0x1Aisize; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_add(self, rhs: isize) -> Option<isize>
[src]
Checked integer addition. Computes self + rhs
, returning None
if overflow occurred.
Basic usage:
assert_eq!((isize::MAX - 2).checked_add(1), Some(isize::MAX - 1)); assert_eq!((isize::MAX - 2).checked_add(3), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub unsafe fn unchecked_add(self, rhs: isize) -> isize
[src]
Unchecked integer addition. Computes self + rhs
, assuming overflow cannot occur. This results in undefined behavior when self + rhs > isize::MAX
or self + rhs < isize::MIN
.
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_sub(self, rhs: isize) -> Option<isize>
[src]
Checked integer subtraction. Computes self - rhs
, returning None
if overflow occurred.
Basic usage:
assert_eq!((isize::MIN + 2).checked_sub(1), Some(isize::MIN + 1)); assert_eq!((isize::MIN + 2).checked_sub(3), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub unsafe fn unchecked_sub(self, rhs: isize) -> isize
[src]
Unchecked integer subtraction. Computes self - rhs
, assuming overflow cannot occur. This results in undefined behavior when self - rhs > isize::MAX
or self - rhs < isize::MIN
.
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_mul(self, rhs: isize) -> Option<isize>
[src]
Checked integer multiplication. Computes self * rhs
, returning None
if overflow occurred.
Basic usage:
assert_eq!(isize::MAX.checked_mul(1), Some(isize::MAX)); assert_eq!(isize::MAX.checked_mul(2), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub unsafe fn unchecked_mul(self, rhs: isize) -> isize
[src]
Unchecked integer multiplication. Computes self * rhs
, assuming overflow cannot occur. This results in undefined behavior when self * rhs > isize::MAX
or self * rhs < isize::MIN
.
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_div(self, rhs: isize) -> Option<isize>
[src]
Checked integer division. Computes self / rhs
, returning None
if rhs == 0
or the division results in overflow.
Basic usage:
assert_eq!((isize::MIN + 1).checked_div(-1), Some(9223372036854775807)); assert_eq!(isize::MIN.checked_div(-1), None); assert_eq!((1isize).checked_div(0), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_div_euclid(self, rhs: isize) -> Option<isize>
[src]1.38.0
Checked Euclidean division. Computes self.div_euclid(rhs)
, returning None
if rhs == 0
or the division results in overflow.
Basic usage:
assert_eq!((isize::MIN + 1).checked_div_euclid(-1), Some(9223372036854775807)); assert_eq!(isize::MIN.checked_div_euclid(-1), None); assert_eq!((1isize).checked_div_euclid(0), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_rem(self, rhs: isize) -> Option<isize>
[src]1.7.0
Checked integer remainder. Computes self % rhs
, returning None
if rhs == 0
or the division results in overflow.
Basic usage:
assert_eq!(5isize.checked_rem(2), Some(1)); assert_eq!(5isize.checked_rem(0), None); assert_eq!(isize::MIN.checked_rem(-1), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_rem_euclid(self, rhs: isize) -> Option<isize>
[src]1.38.0
Checked Euclidean remainder. Computes self.rem_euclid(rhs)
, returning None
if rhs == 0
or the division results in overflow.
Basic usage:
assert_eq!(5isize.checked_rem_euclid(2), Some(1)); assert_eq!(5isize.checked_rem_euclid(0), None); assert_eq!(isize::MIN.checked_rem_euclid(-1), None);
pub const fn checked_neg(self) -> Option<isize>
[src]1.7.0
Checked negation. Computes -self
, returning None
if self == MIN
.
Basic usage:
assert_eq!(5isize.checked_neg(), Some(-5)); assert_eq!(isize::MIN.checked_neg(), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_shl(self, rhs: u32) -> Option<isize>
[src]1.7.0
Checked shift left. Computes self << rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Basic usage:
assert_eq!(0x1isize.checked_shl(4), Some(0x10)); assert_eq!(0x1isize.checked_shl(129), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_shr(self, rhs: u32) -> Option<isize>
[src]1.7.0
Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Basic usage:
assert_eq!(0x10isize.checked_shr(4), Some(0x1)); assert_eq!(0x10isize.checked_shr(128), None);
pub const fn checked_abs(self) -> Option<isize>
[src]1.13.0
Checked absolute value. Computes self.abs()
, returning None
if self == MIN
.
Basic usage:
assert_eq!((-5isize).checked_abs(), Some(5)); assert_eq!(isize::MIN.checked_abs(), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_pow(self, exp: u32) -> Option<isize>
[src]1.34.0
Checked exponentiation. Computes self.pow(exp)
, returning None
if overflow occurred.
Basic usage:
assert_eq!(8isize.checked_pow(2), Some(64)); assert_eq!(isize::MAX.checked_pow(2), None);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn saturating_add(self, rhs: isize) -> isize
[src]
Saturating integer addition. Computes self + rhs
, saturating at the numeric bounds instead of overflowing.
Basic usage:
assert_eq!(100isize.saturating_add(1), 101); assert_eq!(isize::MAX.saturating_add(100), isize::MAX); assert_eq!(isize::MIN.saturating_add(-1), isize::MIN);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn saturating_sub(self, rhs: isize) -> isize
[src]
Saturating integer subtraction. Computes self - rhs
, saturating at the numeric bounds instead of overflowing.
Basic usage:
assert_eq!(100isize.saturating_sub(127), -27); assert_eq!(isize::MIN.saturating_sub(100), isize::MIN); assert_eq!(isize::MAX.saturating_sub(-1), isize::MAX);
pub const fn saturating_neg(self) -> isize
[src]1.45.0
Saturating integer negation. Computes -self
, returning MAX
if self == MIN
instead of overflowing.
Basic usage:
assert_eq!(100isize.saturating_neg(), -100); assert_eq!((-100isize).saturating_neg(), 100); assert_eq!(isize::MIN.saturating_neg(), isize::MAX); assert_eq!(isize::MAX.saturating_neg(), isize::MIN + 1);
pub const fn saturating_abs(self) -> isize
[src]1.45.0
Saturating absolute value. Computes self.abs()
, returning MAX
if self == MIN
instead of overflowing.
Basic usage:
assert_eq!(100isize.saturating_abs(), 100); assert_eq!((-100isize).saturating_abs(), 100); assert_eq!(isize::MIN.saturating_abs(), isize::MAX); assert_eq!((isize::MIN + 1).saturating_abs(), isize::MAX);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn saturating_mul(self, rhs: isize) -> isize
[src]1.7.0
Saturating integer multiplication. Computes self * rhs
, saturating at the numeric bounds instead of overflowing.
Basic usage:
assert_eq!(10isize.saturating_mul(12), 120); assert_eq!(isize::MAX.saturating_mul(10), isize::MAX); assert_eq!(isize::MIN.saturating_mul(10), isize::MIN);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn saturating_pow(self, exp: u32) -> isize
[src]1.34.0
Saturating integer exponentiation. Computes self.pow(exp)
, saturating at the numeric bounds instead of overflowing.
Basic usage:
assert_eq!((-4isize).saturating_pow(3), -64); assert_eq!(isize::MIN.saturating_pow(2), isize::MAX); assert_eq!(isize::MIN.saturating_pow(3), isize::MIN);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_add(self, rhs: isize) -> isize
[src]
Wrapping (modular) addition. Computes self + rhs
, wrapping around at the boundary of the type.
Basic usage:
assert_eq!(100isize.wrapping_add(27), 127); assert_eq!(isize::MAX.wrapping_add(2), isize::MIN + 1);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_sub(self, rhs: isize) -> isize
[src]
Wrapping (modular) subtraction. Computes self - rhs
, wrapping around at the boundary of the type.
Basic usage:
assert_eq!(0isize.wrapping_sub(127), -127); assert_eq!((-2isize).wrapping_sub(isize::MAX), isize::MAX);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_mul(self, rhs: isize) -> isize
[src]
Wrapping (modular) multiplication. Computes self * rhs
, wrapping around at the boundary of the type.
Basic usage:
assert_eq!(10isize.wrapping_mul(12), 120); assert_eq!(11i8.wrapping_mul(12), -124);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_div(self, rhs: isize) -> isize
[src]1.2.0
Wrapping (modular) division. Computes self / rhs
, wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one divides MIN / -1
on a signed type (where MIN
is the negative minimal value for the type); this is equivalent to -MIN
, a positive value that is too large to represent in the type. In such a case, this function returns MIN
itself.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(100isize.wrapping_div(10), 10); assert_eq!((-128i8).wrapping_div(-1), -128);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_div_euclid(self, rhs: isize) -> isize
[src]1.38.0
Wrapping Euclidean division. Computes self.div_euclid(rhs)
, wrapping around at the boundary of the type.
Wrapping will only occur in MIN / -1
on a signed type (where MIN
is the negative minimal value for the type). This is equivalent to -MIN
, a positive value that is too large to represent in the type. In this case, this method returns MIN
itself.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(100isize.wrapping_div_euclid(10), 10); assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_rem(self, rhs: isize) -> isize
[src]1.2.0
Wrapping (modular) remainder. Computes self % rhs
, wrapping around at the boundary of the type.
Such wrap-around never actually occurs mathematically; implementation artifacts make x % y
invalid for MIN / -1
on a signed type (where MIN
is the negative minimal value). In such a case, this function returns 0
.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(100isize.wrapping_rem(10), 0); assert_eq!((-128i8).wrapping_rem(-1), 0);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_rem_euclid(self, rhs: isize) -> isize
[src]1.38.0
Wrapping Euclidean remainder. Computes self.rem_euclid(rhs)
, wrapping around at the boundary of the type.
Wrapping will only occur in MIN % -1
on a signed type (where MIN
is the negative minimal value for the type). In this case, this method returns 0.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(100isize.wrapping_rem_euclid(10), 0); assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
pub const fn wrapping_neg(self) -> isize
[src]1.2.0
Wrapping (modular) negation. Computes -self
, wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one negates MIN
on a signed type (where MIN
is the negative minimal value for the type); this is a positive value that is too large to represent in the type. In such a case, this function returns MIN
itself.
Basic usage:
assert_eq!(100isize.wrapping_neg(), -100); assert_eq!(isize::MIN.wrapping_neg(), isize::MIN);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_shl(self, rhs: u32) -> isize
[src]1.2.0
Panic-free bitwise shift-left; yields self << mask(rhs)
, where mask
removes any high-order bits of rhs
that would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a [
rotate_left`](#method.rotate_left) function, which may be what you want instead.
Basic usage:
assert_eq!((-1isize).wrapping_shl(7), -128); assert_eq!((-1isize).wrapping_shl(128), -1);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_shr(self, rhs: u32) -> isize
[src]1.2.0
Panic-free bitwise shift-right; yields self >> mask(rhs)
, where mask
removes any high-order bits of rhs
that would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_right
function, which may be what you want instead.
Basic usage:
assert_eq!((-128isize).wrapping_shr(7), -1); assert_eq!((-128i16).wrapping_shr(64), -128);
pub const fn wrapping_abs(self) -> isize
[src]1.13.0
Wrapping (modular) absolute value. Computes self.abs()
, wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative minimal value for the type; this is a positive value that is too large to represent in the type. In such a case, this function returns MIN
itself.
Basic usage:
assert_eq!(100isize.wrapping_abs(), 100); assert_eq!((-100isize).wrapping_abs(), 100); assert_eq!(isize::MIN.wrapping_abs(), isize::MIN); assert_eq!((-128i8).wrapping_abs() as u8, 128);
pub fn unsigned_abs(self) -> u64
[src]
Computes the absolute value of self
without any wrapping or panicking.
Basic usage:
#![feature(unsigned_abs)] assert_eq!(100isize.unsigned_abs(), 100u64); assert_eq!((-100isize).unsigned_abs(), 100u64); assert_eq!((-128i8).unsigned_abs(), 128u8);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_pow(self, exp: u32) -> isize
[src]1.34.0
Wrapping (modular) exponentiation. Computes self.pow(exp)
, wrapping around at the boundary of the type.
Basic usage:
assert_eq!(3isize.wrapping_pow(4), 81); assert_eq!(3i8.wrapping_pow(5), -13); assert_eq!(3i8.wrapping_pow(6), -39);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_add(self, rhs: isize) -> (isize, bool)
[src]1.7.0
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Basic usage:
assert_eq!(5isize.overflowing_add(2), (7, false)); assert_eq!(isize::MAX.overflowing_add(1), (isize::MIN, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_sub(self, rhs: isize) -> (isize, bool)
[src]1.7.0
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Basic usage:
assert_eq!(5isize.overflowing_sub(2), (3, false)); assert_eq!(isize::MIN.overflowing_sub(1), (isize::MAX, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_mul(self, rhs: isize) -> (isize, bool)
[src]1.7.0
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Basic usage:
assert_eq!(5isize.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_div(self, rhs: isize) -> (isize, bool)
[src]1.7.0
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(5isize.overflowing_div(2), (2, false)); assert_eq!(isize::MIN.overflowing_div(-1), (isize::MIN, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_div_euclid(self, rhs: isize) -> (isize, bool)
[src]1.38.0
Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self
is returned.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(5isize.overflowing_div_euclid(2), (2, false)); assert_eq!(isize::MIN.overflowing_div_euclid(-1), (isize::MIN, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_rem(self, rhs: isize) -> (isize, bool)
[src]1.7.0
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(5isize.overflowing_rem(2), (1, false)); assert_eq!(isize::MIN.overflowing_rem(-1), (0, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_rem_euclid(self, rhs: isize) -> (isize, bool)
[src]1.38.0
Overflowing Euclidean remainder. Calculates self.rem_euclid(rhs)
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
This function will panic if rhs
is 0.
Basic usage:
assert_eq!(5isize.overflowing_rem_euclid(2), (1, false)); assert_eq!(isize::MIN.overflowing_rem_euclid(-1), (0, true));
pub const fn overflowing_neg(self) -> (isize, bool)
[src]1.7.0
Negates self, overflowing if this is equal to the minimum value.
Returns a tuple of the negated version of self along with a boolean indicating whether an overflow happened. If self
is the minimum value (e.g., i32::MIN
for values of type i32
), then the minimum value will be returned again and true
will be returned for an overflow happening.
Basic usage:
assert_eq!(2isize.overflowing_neg(), (-2, false)); assert_eq!(isize::MIN.overflowing_neg(), (isize::MIN, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_shl(self, rhs: u32) -> (isize, bool)
[src]1.7.0
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Basic usage:
assert_eq!(0x1isize.overflowing_shl(4), (0x10, false)); assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_shr(self, rhs: u32) -> (isize, bool)
[src]1.7.0
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Basic usage:
assert_eq!(0x10isize.overflowing_shr(4), (0x1, false)); assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
pub const fn overflowing_abs(self) -> (isize, bool)
[src]1.13.0
Computes the absolute value of self
.
Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., isize::MIN for values of type isize), then the minimum value will be returned again and true will be returned for an overflow happening.
Basic usage:
assert_eq!(10isize.overflowing_abs(), (10, false)); assert_eq!((-10isize).overflowing_abs(), (10, false)); assert_eq!((isize::MIN).overflowing_abs(), (isize::MIN, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_pow(self, exp: u32) -> (isize, bool)
[src]1.34.0
Raises self to the power of exp
, using exponentiation by squaring.
Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.
Basic usage:
assert_eq!(3isize.overflowing_pow(4), (81, false)); assert_eq!(3i8.overflowing_pow(5), (-13, true));
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn pow(self, exp: u32) -> isize
[src]
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
let x: isize = 2; // or any other integer type assert_eq!(x.pow(5), 32);
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn div_euclid(self, rhs: isize) -> isize
[src]1.38.0
Calculates the quotient of Euclidean division of self
by rhs
.
This computes the integer n
such that self = n * rhs + self.rem_euclid(rhs)
, with 0 <= self.rem_euclid(rhs) < rhs
.
In other words, the result is self / rhs
rounded to the integer n
such that self >= n * rhs
. If self > 0
, this is equal to round towards zero (the default in Rust); if self < 0
, this is equal to round towards +/- infinity.
This function will panic if rhs
is 0 or the division results in overflow.
Basic usage:
let a: isize = 7; // or any other integer type let b = 4; assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1 assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1 assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2 assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn rem_euclid(self, rhs: isize) -> isize
[src]1.38.0
Calculates the least nonnegative remainder of self (mod rhs)
.
This is done as if by the Euclidean division algorithm -- given r = self.rem_euclid(rhs)
, self = rhs * self.div_euclid(rhs) + r
, and 0 <= r < abs(rhs)
.
This function will panic if rhs
is 0 or the division results in overflow.
Basic usage:
let a: isize = 7; // or any other integer type let b = 4; assert_eq!(a.rem_euclid(b), 3); assert_eq!((-a).rem_euclid(b), 1); assert_eq!(a.rem_euclid(-b), 3); assert_eq!((-a).rem_euclid(-b), 1);
pub const fn abs(self) -> isize
[src]
Computes the absolute value of self
.
The absolute value of isize::MIN
cannot be represented as an isize
, and attempting to calculate it will cause an overflow. This means that code in debug mode will trigger a panic on this case and optimized code will return isize::MIN
without a panic.
Basic usage:
assert_eq!(10isize.abs(), 10); assert_eq!((-10isize).abs(), 10);
pub const fn signum(self) -> isize
[src]
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negativeBasic usage:
assert_eq!(10isize.signum(), 1); assert_eq!(0isize.signum(), 0); assert_eq!((-10isize).signum(), -1);
pub const fn is_positive(self) -> bool
[src]
Returns true
if self
is positive and false
if the number is zero or negative.
Basic usage:
assert!(10isize.is_positive()); assert!(!(-10isize).is_positive());
pub const fn is_negative(self) -> bool
[src]
Returns true
if self
is negative and false
if the number is zero or positive.
Basic usage:
assert!((-10isize).is_negative()); assert!(!10isize.is_negative());
pub const fn to_be_bytes(self) -> [u8; 8]
[src]1.32.0
Return the memory representation of this integer as a byte array in big-endian (network) byte order.
Note: This function returns an array of length 2, 4 or 8 bytes depending on the target pointer size.
let bytes = 0x1234567890123456isize.to_be_bytes(); assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
pub const fn to_le_bytes(self) -> [u8; 8]
[src]1.32.0
Return the memory representation of this integer as a byte array in little-endian byte order.
Note: This function returns an array of length 2, 4 or 8 bytes depending on the target pointer size.
let bytes = 0x1234567890123456isize.to_le_bytes(); assert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
pub const fn to_ne_bytes(self) -> [u8; 8]
[src]1.32.0
Return the memory representation of this integer as a byte array in native byte order.
As the target platform's native endianness is used, portable code should use to_be_bytes
or to_le_bytes
, as appropriate, instead.
Note: This function returns an array of length 2, 4 or 8 bytes depending on the target pointer size.
let bytes = 0x1234567890123456isize.to_ne_bytes(); assert_eq!( bytes, if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56] } else { [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12] } );
pub const fn from_be_bytes(bytes: [u8; 8]) -> isize
[src]1.32.0
Create an integer value from its representation as a byte array in big endian.
Note: This function takes an array of length 2, 4 or 8 bytes depending on the target pointer size.
let value = isize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]); assert_eq!(value, 0x1234567890123456);
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_be_isize(input: &mut &[u8]) -> isize { let (int_bytes, rest) = input.split_at(std::mem::size_of::<isize>()); *input = rest; isize::from_be_bytes(int_bytes.try_into().unwrap()) }
pub const fn from_le_bytes(bytes: [u8; 8]) -> isize
[src]1.32.0
Create an integer value from its representation as a byte array in little endian.
Note: This function takes an array of length 2, 4 or 8 bytes depending on the target pointer size.
let value = isize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]); assert_eq!(value, 0x1234567890123456);
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_le_isize(input: &mut &[u8]) -> isize { let (int_bytes, rest) = input.split_at(std::mem::size_of::<isize>()); *input = rest; isize::from_le_bytes(int_bytes.try_into().unwrap()) }
pub const fn from_ne_bytes(bytes: [u8; 8]) -> isize
[src]1.32.0
Create an integer value from its memory representation as a byte array in native endianness.
As the target platform's native endianness is used, portable code likely wants to use from_be_bytes
or from_le_bytes
, as appropriate instead.
Note: This function takes an array of length 2, 4 or 8 bytes depending on the target pointer size.
let value = isize::from_ne_bytes(if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56] } else { [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12] }); assert_eq!(value, 0x1234567890123456);
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_ne_isize(input: &mut &[u8]) -> isize { let (int_bytes, rest) = input.split_at(std::mem::size_of::<isize>()); *input = rest; isize::from_ne_bytes(int_bytes.try_into().unwrap()) }
pub const fn min_value() -> isize
[src]
This method is soft-deprecated.
Although using it wonâ€™t cause compilation warning, new code should use isize::MIN
instead.
Returns the smallest value that can be represented by this integer type.
pub const fn max_value() -> isize
[src]
This method is soft-deprecated.
Although using it wonâ€™t cause compilation warning, new code should use isize::MAX
instead.
Returns the largest value that can be represented by this integer type.
impl<'_, '_> Add<&'_ isize> for &'_ isize
[src]
type Output = <isize as Add<isize>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &isize) -> <isize as Add<isize>>::Output
[src]
impl<'_> Add<&'_ isize> for isize
[src]
type Output = <isize as Add<isize>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &isize) -> <isize as Add<isize>>::Output
[src]
impl<'a> Add<isize> for &'a isize
[src]
type Output = <isize as Add<isize>>::Output
The resulting type after applying the +
operator.
fn add(self, other: isize) -> <isize as Add<isize>>::Output
[src]
impl Add<isize> for isize
[src]
type Output = isize
The resulting type after applying the +
operator.
fn add(self, other: isize) -> isize
[src]
impl<'_> AddAssign<&'_ isize> for isize
[src]1.22.0
fn add_assign(&mut self, other: &isize)
[src]
impl AddAssign<isize> for isize
[src]1.8.0
fn add_assign(&mut self, other: isize)
[src]
impl Binary for isize
[src]
impl<'_, '_> BitAnd<&'_ isize> for &'_ isize
[src]
type Output = <isize as BitAnd<isize>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: &isize) -> <isize as BitAnd<isize>>::Output
[src]
impl<'_> BitAnd<&'_ isize> for isize
[src]
type Output = <isize as BitAnd<isize>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: &isize) -> <isize as BitAnd<isize>>::Output
[src]
impl BitAnd<isize> for isize
[src]
type Output = isize
The resulting type after applying the &
operator.
fn bitand(self, rhs: isize) -> isize
[src]
impl<'a> BitAnd<isize> for &'a isize
[src]
type Output = <isize as BitAnd<isize>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: isize) -> <isize as BitAnd<isize>>::Output
[src]
impl<'_> BitAndAssign<&'_ isize> for isize
[src]1.22.0
fn bitand_assign(&mut self, other: &isize)
[src]
impl BitAndAssign<isize> for isize
[src]1.8.0
fn bitand_assign(&mut self, other: isize)
[src]
impl<'_, '_> BitOr<&'_ isize> for &'_ isize
[src]
type Output = <isize as BitOr<isize>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: &isize) -> <isize as BitOr<isize>>::Output
[src]
impl<'_> BitOr<&'_ isize> for isize
[src]
type Output = <isize as BitOr<isize>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: &isize) -> <isize as BitOr<isize>>::Output
[src]
impl BitOr<NonZeroIsize> for isize
[src]1.45.0
type Output = NonZeroIsize
The resulting type after applying the |
operator.
fn bitor(self, rhs: NonZeroIsize) -> <isize as BitOr<NonZeroIsize>>::Output
[src]
impl BitOr<isize> for isize
[src]
type Output = isize
The resulting type after applying the |
operator.
fn bitor(self, rhs: isize) -> isize
[src]
impl<'a> BitOr<isize> for &'a isize
[src]
type Output = <isize as BitOr<isize>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: isize) -> <isize as BitOr<isize>>::Output
[src]
impl<'_> BitOrAssign<&'_ isize> for isize
[src]1.22.0
fn bitor_assign(&mut self, other: &isize)
[src]
impl BitOrAssign<isize> for isize
[src]1.8.0
fn bitor_assign(&mut self, other: isize)
[src]
impl<'_> BitXor<&'_ isize> for isize
[src]
type Output = <isize as BitXor<isize>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: &isize) -> <isize as BitXor<isize>>::Output
[src]
impl<'_, '_> BitXor<&'_ isize> for &'_ isize
[src]
type Output = <isize as BitXor<isize>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: &isize) -> <isize as BitXor<isize>>::Output
[src]
impl BitXor<isize> for isize
[src]
type Output = isize
The resulting type after applying the ^
operator.
fn bitxor(self, other: isize) -> isize
[src]
impl<'a> BitXor<isize> for &'a isize
[src]
type Output = <isize as BitXor<isize>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: isize) -> <isize as BitXor<isize>>::Output
[src]
impl<'_> BitXorAssign<&'_ isize> for isize
[src]1.22.0
fn bitxor_assign(&mut self, other: &isize)
[src]
impl BitXorAssign<isize> for isize
[src]1.8.0
fn bitxor_assign(&mut self, other: isize)
[src]
impl Clone for isize
[src]
impl Copy for isize
[src]
impl Debug for isize
[src]
impl Default for isize
[src]
impl Display for isize
[src]
impl<'_, '_> Div<&'_ isize> for &'_ isize
[src]
type Output = <isize as Div<isize>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &isize) -> <isize as Div<isize>>::Output
[src]
impl<'_> Div<&'_ isize> for isize
[src]
type Output = <isize as Div<isize>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &isize) -> <isize as Div<isize>>::Output
[src]
impl Div<isize> for isize
[src]
This operation rounds towards zero, truncating any fractional part of the exact result.
type Output = isize
The resulting type after applying the /
operator.
fn div(self, other: isize) -> isize
[src]
impl<'a> Div<isize> for &'a isize
[src]
type Output = <isize as Div<isize>>::Output
The resulting type after applying the /
operator.
fn div(self, other: isize) -> <isize as Div<isize>>::Output
[src]
impl<'_> DivAssign<&'_ isize> for isize
[src]1.22.0
fn div_assign(&mut self, other: &isize)
[src]
impl DivAssign<isize> for isize
[src]1.8.0
fn div_assign(&mut self, other: isize)
[src]
impl Eq for isize
[src]
impl From<NonZeroIsize> for isize
[src]1.31.0
fn from(nonzero: NonZeroIsize) -> isize
[src]
Converts a NonZeroIsize
into an isize
impl From<bool> for isize
[src]1.28.0
Converts a bool
to a isize
. The resulting value is 0
for false
and 1
for true
values.
assert_eq!(isize::from(true), 1); assert_eq!(isize::from(false), 0);
impl From<i16> for isize
[src]1.26.0
Converts i16
to isize
losslessly.
impl From<i8> for isize
[src]1.5.0
Converts i8
to isize
losslessly.
impl From<u8> for isize
[src]1.26.0
Converts u8
to isize
losslessly.
impl FromStr for isize
[src]
type Err = ParseIntError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<isize, ParseIntError>
[src]
impl Hash for isize
[src]
fn hash<H>(&self, state: &mut H) where
Â Â Â Â H: Hasher,Â
[src]
fn hash_slice<H>(data: &[isize], state: &mut H) where
Â Â Â Â H: Hasher,Â
[src]
impl LowerExp for isize
[src]1.42.0
impl LowerHex for isize
[src]
impl<'_> Mul<&'_ isize> for isize
[src]
type Output = <isize as Mul<isize>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &isize) -> <isize as Mul<isize>>::Output
[src]
impl<'_, '_> Mul<&'_ isize> for &'_ isize
[src]
type Output = <isize as Mul<isize>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &isize) -> <isize as Mul<isize>>::Output
[src]
impl<'a> Mul<isize> for &'a isize
[src]
type Output = <isize as Mul<isize>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: isize) -> <isize as Mul<isize>>::Output
[src]
impl Mul<isize> for isize
[src]
type Output = isize
The resulting type after applying the *
operator.
fn mul(self, other: isize) -> isize
[src]
impl<'_> MulAssign<&'_ isize> for isize
[src]1.22.0
fn mul_assign(&mut self, other: &isize)
[src]
impl MulAssign<isize> for isize
[src]1.8.0
fn mul_assign(&mut self, other: isize)
[src]
impl<'_> Neg for &'_ isize
[src]
type Output = <isize as Neg>::Output
The resulting type after applying the -
operator.
fn neg(self) -> <isize as Neg>::Output
[src]
impl Neg for isize
[src]
impl<'_> Not for &'_ isize
[src]
type Output = <isize as Not>::Output
The resulting type after applying the !
operator.
fn not(self) -> <isize as Not>::Output
[src]
impl Not for isize
[src]
impl Octal for isize
[src]
impl Ord for isize
[src]
fn cmp(&self, other: &isize) -> Ordering
[src]
fn max(self, other: Self) -> Self
[src]1.21.0
fn min(self, other: Self) -> Self
[src]1.21.0
fn clamp(self, min: Self, max: Self) -> Self
[src]
impl PartialEq<isize> for isize
[src]
impl PartialOrd<isize> for isize
[src]
fn partial_cmp(&self, other: &isize) -> Option<Ordering>
[src]
fn lt(&self, other: &isize) -> bool
[src]
fn le(&self, other: &isize) -> bool
[src]
fn ge(&self, other: &isize) -> bool
[src]
fn gt(&self, other: &isize) -> bool
[src]
impl<'a> Product<&'a isize> for isize
[src]1.12.0
impl Product<isize> for isize
[src]1.12.0
impl<'_, '_> Rem<&'_ isize> for &'_ isize
[src]
type Output = <isize as Rem<isize>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &isize) -> <isize as Rem<isize>>::Output
[src]
impl<'_> Rem<&'_ isize> for isize
[src]
type Output = <isize as Rem<isize>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &isize) -> <isize as Rem<isize>>::Output
[src]
impl Rem<isize> for isize
[src]
This operation satisfies n % d == n - (n / d) * d
. The result has the same sign as the left operand.
type Output = isize
The resulting type after applying the %
operator.
fn rem(self, other: isize) -> isize
[src]
impl<'a> Rem<isize> for &'a isize
[src]
type Output = <isize as Rem<isize>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: isize) -> <isize as Rem<isize>>::Output
[src]
impl<'_> RemAssign<&'_ isize> for isize
[src]1.22.0
fn rem_assign(&mut self, other: &isize)
[src]
impl RemAssign<isize> for isize
[src]1.8.0
fn rem_assign(&mut self, other: isize)
[src]
impl<'_> Shl<&'_ i128> for isize
[src]
type Output = <isize as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i128) -> <isize as Shl<i128>>::Output
[src]
impl<'_, '_> Shl<&'_ i128> for &'_ isize
[src]
type Output = <isize as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i128) -> <isize as Shl<i128>>::Output
[src]
impl<'_, '_> Shl<&'_ i16> for &'_ isize
[src]
type Output = <isize as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i16) -> <isize as Shl<i16>>::Output
[src]
impl<'_> Shl<&'_ i16> for isize
[src]
type Output = <isize as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i16) -> <isize as Shl<i16>>::Output
[src]
impl<'_, '_> Shl<&'_ i32> for &'_ isize
[src]
type Output = <isize as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i32) -> <isize as Shl<i32>>::Output
[src]
impl<'_> Shl<&'_ i32> for isize
[src]
type Output = <isize as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i32) -> <isize as Shl<i32>>::Output
[src]
impl<'_, '_> Shl<&'_ i64> for &'_ isize
[src]
type Output = <isize as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i64) -> <isize as Shl<i64>>::Output
[src]
impl<'_> Shl<&'_ i64> for isize
[src]
type Output = <isize as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i64) -> <isize as Shl<i64>>::Output
[src]
impl<'_> Shl<&'_ i8> for isize
[src]
type Output = <isize as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i8) -> <isize as Shl<i8>>::Output
[src]
impl<'_, '_> Shl<&'_ i8> for &'_ isize
[src]
type Output = <isize as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i8) -> <isize as Shl<i8>>::Output
[src]
impl<'_, '_> Shl<&'_ isize> for &'_ isize
[src]
type Output = <isize as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &isize) -> <isize as Shl<isize>>::Output
[src]
impl<'_> Shl<&'_ isize> for isize
[src]
type Output = <isize as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &isize) -> <isize as Shl<isize>>::Output
[src]
impl<'_, '_> Shl<&'_ u128> for &'_ isize
[src]
type Output = <isize as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u128) -> <isize as Shl<u128>>::Output
[src]
impl<'_> Shl<&'_ u128> for isize
[src]
type Output = <isize as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u128) -> <isize as Shl<u128>>::Output
[src]
impl<'_> Shl<&'_ u16> for isize
[src]
type Output = <isize as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u16) -> <isize as Shl<u16>>::Output
[src]
impl<'_, '_> Shl<&'_ u16> for &'_ isize
[src]
type Output = <isize as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u16) -> <isize as Shl<u16>>::Output
[src]
impl<'_> Shl<&'_ u32> for isize
[src]
type Output = <isize as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u32) -> <isize as Shl<u32>>::Output
[src]
impl<'_, '_> Shl<&'_ u32> for &'_ isize
[src]
type Output = <isize as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u32) -> <isize as Shl<u32>>::Output
[src]
impl<'_, '_> Shl<&'_ u64> for &'_ isize
[src]
type Output = <isize as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u64) -> <isize as Shl<u64>>::Output
[src]
impl<'_> Shl<&'_ u64> for isize
[src]
type Output = <isize as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u64) -> <isize as Shl<u64>>::Output
[src]
impl<'_> Shl<&'_ u8> for isize
[src]
type Output = <isize as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u8) -> <isize as Shl<u8>>::Output
[src]
impl<'_, '_> Shl<&'_ u8> for &'_ isize
[src]
type Output = <isize as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u8) -> <isize as Shl<u8>>::Output
[src]
impl<'_> Shl<&'_ usize> for isize
[src]
type Output = <isize as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &usize) -> <isize as Shl<usize>>::Output
[src]
impl<'_, '_> Shl<&'_ usize> for &'_ isize
[src]
type Output = <isize as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &usize) -> <isize as Shl<usize>>::Output
[src]
impl Shl<i128> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: i128) -> isize
[src]
impl<'a> Shl<i128> for &'a isize
[src]
type Output = <isize as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i128) -> <isize as Shl<i128>>::Output
[src]
impl Shl<i16> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: i16) -> isize
[src]
impl<'a> Shl<i16> for &'a isize
[src]
type Output = <isize as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i16) -> <isize as Shl<i16>>::Output
[src]
impl<'a> Shl<i32> for &'a isize
[src]
type Output = <isize as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i32) -> <isize as Shl<i32>>::Output
[src]
impl Shl<i32> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: i32) -> isize
[src]
impl Shl<i64> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: i64) -> isize
[src]
impl<'a> Shl<i64> for &'a isize
[src]
type Output = <isize as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i64) -> <isize as Shl<i64>>::Output
[src]
impl<'a> Shl<i8> for &'a isize
[src]
type Output = <isize as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i8) -> <isize as Shl<i8>>::Output
[src]
impl Shl<i8> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: i8) -> isize
[src]
impl<'a> Shl<isize> for &'a isize
[src]
type Output = <isize as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: isize) -> <isize as Shl<isize>>::Output
[src]
impl Shl<isize> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: isize) -> isize
[src]
impl Shl<u128> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: u128) -> isize
[src]
impl<'a> Shl<u128> for &'a isize
[src]
type Output = <isize as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u128) -> <isize as Shl<u128>>::Output
[src]
impl Shl<u16> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: u16) -> isize
[src]
impl<'a> Shl<u16> for &'a isize
[src]
type Output = <isize as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u16) -> <isize as Shl<u16>>::Output
[src]
impl Shl<u32> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: u32) -> isize
[src]
impl<'a> Shl<u32> for &'a isize
[src]
type Output = <isize as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u32) -> <isize as Shl<u32>>::Output
[src]
impl<'a> Shl<u64> for &'a isize
[src]
type Output = <isize as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u64) -> <isize as Shl<u64>>::Output
[src]
impl Shl<u64> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: u64) -> isize
[src]
impl Shl<u8> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: u8) -> isize
[src]
impl<'a> Shl<u8> for &'a isize
[src]
type Output = <isize as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u8) -> <isize as Shl<u8>>::Output
[src]
impl<'a> Shl<usize> for &'a isize
[src]
type Output = <isize as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: usize) -> <isize as Shl<usize>>::Output
[src]
impl Shl<usize> for isize
[src]
type Output = isize
The resulting type after applying the <<
operator.
fn shl(self, other: usize) -> isize
[src]
impl<'_> ShlAssign<&'_ i128> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &i128)
[src]
impl<'_> ShlAssign<&'_ i16> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &i16)
[src]
impl<'_> ShlAssign<&'_ i32> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &i32)
[src]
impl<'_> ShlAssign<&'_ i64> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &i64)
[src]
impl<'_> ShlAssign<&'_ i8> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &i8)
[src]
impl<'_> ShlAssign<&'_ isize> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &isize)
[src]
impl<'_> ShlAssign<&'_ u128> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &u128)
[src]
impl<'_> ShlAssign<&'_ u16> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &u16)
[src]
impl<'_> ShlAssign<&'_ u32> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &u32)
[src]
impl<'_> ShlAssign<&'_ u64> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &u64)
[src]
impl<'_> ShlAssign<&'_ u8> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &u8)
[src]
impl<'_> ShlAssign<&'_ usize> for isize
[src]1.22.0
fn shl_assign(&mut self, other: &usize)
[src]
impl ShlAssign<i128> for isize
[src]1.8.0
fn shl_assign(&mut self, other: i128)
[src]
impl ShlAssign<i16> for isize
[src]1.8.0
fn shl_assign(&mut self, other: i16)
[src]
impl ShlAssign<i32> for isize
[src]1.8.0
fn shl_assign(&mut self, other: i32)
[src]
impl ShlAssign<i64> for isize
[src]1.8.0
fn shl_assign(&mut self, other: i64)
[src]
impl ShlAssign<i8> for isize
[src]1.8.0
fn shl_assign(&mut self, other: i8)
[src]
impl ShlAssign<isize> for isize
[src]1.8.0
fn shl_assign(&mut self, other: isize)
[src]
impl ShlAssign<u128> for isize
[src]1.8.0
fn shl_assign(&mut self, other: u128)
[src]
impl ShlAssign<u16> for isize
[src]1.8.0
fn shl_assign(&mut self, other: u16)
[src]
impl ShlAssign<u32> for isize
[src]1.8.0
fn shl_assign(&mut self, other: u32)
[src]
impl ShlAssign<u64> for isize
[src]1.8.0
fn shl_assign(&mut self, other: u64)
[src]
impl ShlAssign<u8> for isize
[src]1.8.0
fn shl_assign(&mut self, other: u8)
[src]
impl ShlAssign<usize> for isize
[src]1.8.0
fn shl_assign(&mut self, other: usize)
[src]
impl<'_, '_> Shr<&'_ i128> for &'_ isize
[src]
type Output = <isize as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i128) -> <isize as Shr<i128>>::Output
[src]
impl<'_> Shr<&'_ i128> for isize
[src]
type Output = <isize as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i128) -> <isize as Shr<i128>>::Output
[src]
impl<'_> Shr<&'_ i16> for isize
[src]
type Output = <isize as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i16) -> <isize as Shr<i16>>::Output
[src]
impl<'_, '_> Shr<&'_ i16> for &'_ isize
[src]
type Output = <isize as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i16) -> <isize as Shr<i16>>::Output
[src]
impl<'_> Shr<&'_ i32> for isize
[src]
type Output = <isize as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i32) -> <isize as Shr<i32>>::Output
[src]
impl<'_, '_> Shr<&'_ i32> for &'_ isize
[src]
type Output = <isize as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i32) -> <isize as Shr<i32>>::Output
[src]
impl<'_, '_> Shr<&'_ i64> for &'_ isize
[src]
type Output = <isize as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i64) -> <isize as Shr<i64>>::Output
[src]
impl<'_> Shr<&'_ i64> for isize
[src]
type Output = <isize as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i64) -> <isize as Shr<i64>>::Output
[src]
impl<'_, '_> Shr<&'_ i8> for &'_ isize
[src]
type Output = <isize as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i8) -> <isize as Shr<i8>>::Output
[src]
impl<'_> Shr<&'_ i8> for isize
[src]
type Output = <isize as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i8) -> <isize as Shr<i8>>::Output
[src]
impl<'_> Shr<&'_ isize> for isize
[src]
type Output = <isize as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &isize) -> <isize as Shr<isize>>::Output
[src]
impl<'_, '_> Shr<&'_ isize> for &'_ isize
[src]
type Output = <isize as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &isize) -> <isize as Shr<isize>>::Output
[src]
impl<'_> Shr<&'_ u128> for isize
[src]
type Output = <isize as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u128) -> <isize as Shr<u128>>::Output
[src]
impl<'_, '_> Shr<&'_ u128> for &'_ isize
[src]
type Output = <isize as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u128) -> <isize as Shr<u128>>::Output
[src]
impl<'_, '_> Shr<&'_ u16> for &'_ isize
[src]
type Output = <isize as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u16) -> <isize as Shr<u16>>::Output
[src]
impl<'_> Shr<&'_ u16> for isize
[src]
type Output = <isize as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u16) -> <isize as Shr<u16>>::Output
[src]
impl<'_, '_> Shr<&'_ u32> for &'_ isize
[src]
type Output = <isize as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u32) -> <isize as Shr<u32>>::Output
[src]
impl<'_> Shr<&'_ u32> for isize
[src]
type Output = <isize as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u32) -> <isize as Shr<u32>>::Output
[src]
impl<'_, '_> Shr<&'_ u64> for &'_ isize
[src]
type Output = <isize as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u64) -> <isize as Shr<u64>>::Output
[src]
impl<'_> Shr<&'_ u64> for isize
[src]
type Output = <isize as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u64) -> <isize as Shr<u64>>::Output
[src]
impl<'_, '_> Shr<&'_ u8> for &'_ isize
[src]
type Output = <isize as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u8) -> <isize as Shr<u8>>::Output
[src]
impl<'_> Shr<&'_ u8> for isize
[src]
type Output = <isize as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u8) -> <isize as Shr<u8>>::Output
[src]
impl<'_, '_> Shr<&'_ usize> for &'_ isize
[src]
type Output = <isize as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &usize) -> <isize as Shr<usize>>::Output
[src]
impl<'_> Shr<&'_ usize> for isize
[src]
type Output = <isize as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &usize) -> <isize as Shr<usize>>::Output
[src]
impl Shr<i128> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: i128) -> isize
[src]
impl<'a> Shr<i128> for &'a isize
[src]
type Output = <isize as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i128) -> <isize as Shr<i128>>::Output
[src]
impl Shr<i16> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: i16) -> isize
[src]
impl<'a> Shr<i16> for &'a isize
[src]
type Output = <isize as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i16) -> <isize as Shr<i16>>::Output
[src]
impl<'a> Shr<i32> for &'a isize
[src]
type Output = <isize as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i32) -> <isize as Shr<i32>>::Output
[src]
impl Shr<i32> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: i32) -> isize
[src]
impl<'a> Shr<i64> for &'a isize
[src]
type Output = <isize as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i64) -> <isize as Shr<i64>>::Output
[src]
impl Shr<i64> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: i64) -> isize
[src]
impl<'a> Shr<i8> for &'a isize
[src]
type Output = <isize as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i8) -> <isize as Shr<i8>>::Output
[src]
impl Shr<i8> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: i8) -> isize
[src]
impl<'a> Shr<isize> for &'a isize
[src]
type Output = <isize as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: isize) -> <isize as Shr<isize>>::Output
[src]
impl Shr<isize> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: isize) -> isize
[src]
impl<'a> Shr<u128> for &'a isize
[src]
type Output = <isize as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u128) -> <isize as Shr<u128>>::Output
[src]
impl Shr<u128> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: u128) -> isize
[src]
impl Shr<u16> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: u16) -> isize
[src]
impl<'a> Shr<u16> for &'a isize
[src]
type Output = <isize as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u16) -> <isize as Shr<u16>>::Output
[src]
impl Shr<u32> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: u32) -> isize
[src]
impl<'a> Shr<u32> for &'a isize
[src]
type Output = <isize as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u32) -> <isize as Shr<u32>>::Output
[src]
impl Shr<u64> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: u64) -> isize
[src]
impl<'a> Shr<u64> for &'a isize
[src]
type Output = <isize as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u64) -> <isize as Shr<u64>>::Output
[src]
impl Shr<u8> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: u8) -> isize
[src]
impl<'a> Shr<u8> for &'a isize
[src]
type Output = <isize as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u8) -> <isize as Shr<u8>>::Output
[src]
impl<'a> Shr<usize> for &'a isize
[src]
type Output = <isize as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: usize) -> <isize as Shr<usize>>::Output
[src]
impl Shr<usize> for isize
[src]
type Output = isize
The resulting type after applying the >>
operator.
fn shr(self, other: usize) -> isize
[src]
impl<'_> ShrAssign<&'_ i128> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &i128)
[src]
impl<'_> ShrAssign<&'_ i16> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &i16)
[src]
impl<'_> ShrAssign<&'_ i32> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &i32)
[src]
impl<'_> ShrAssign<&'_ i64> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &i64)
[src]
impl<'_> ShrAssign<&'_ i8> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &i8)
[src]
impl<'_> ShrAssign<&'_ isize> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &isize)
[src]
impl<'_> ShrAssign<&'_ u128> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &u128)
[src]
impl<'_> ShrAssign<&'_ u16> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &u16)
[src]
impl<'_> ShrAssign<&'_ u32> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &u32)
[src]
impl<'_> ShrAssign<&'_ u64> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &u64)
[src]
impl<'_> ShrAssign<&'_ u8> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &u8)
[src]
impl<'_> ShrAssign<&'_ usize> for isize
[src]1.22.0
fn shr_assign(&mut self, other: &usize)
[src]
impl ShrAssign<i128> for isize
[src]1.8.0
fn shr_assign(&mut self, other: i128)
[src]
impl ShrAssign<i16> for isize
[src]1.8.0
fn shr_assign(&mut self, other: i16)
[src]
impl ShrAssign<i32> for isize
[src]1.8.0
fn shr_assign(&mut self, other: i32)
[src]
impl ShrAssign<i64> for isize
[src]1.8.0
fn shr_assign(&mut self, other: i64)
[src]
impl ShrAssign<i8> for isize
[src]1.8.0
fn shr_assign(&mut self, other: i8)
[src]
impl ShrAssign<isize> for isize
[src]1.8.0
fn shr_assign(&mut self, other: isize)
[src]
impl ShrAssign<u128> for isize
[src]1.8.0
fn shr_assign(&mut self, other: u128)
[src]
impl ShrAssign<u16> for isize
[src]1.8.0
fn shr_assign(&mut self, other: u16)
[src]
impl ShrAssign<u32> for isize
[src]1.8.0
fn shr_assign(&mut self, other: u32)
[src]
impl ShrAssign<u64> for isize
[src]1.8.0
fn shr_assign(&mut self, other: u64)
[src]
impl ShrAssign<u8> for isize
[src]1.8.0
fn shr_assign(&mut self, other: u8)
[src]
impl ShrAssign<usize> for isize
[src]1.8.0
fn shr_assign(&mut self, other: usize)
[src]
impl Step for isize
[src]
unsafe fn forward_unchecked(start: isize, n: usize) -> isize
[src]
unsafe fn backward_unchecked(start: isize, n: usize) -> isize
[src]
fn forward(start: isize, n: usize) -> isize
[src]
fn backward(start: isize, n: usize) -> isize
[src]
fn steps_between(start: &isize, end: &isize) -> Option<usize>
[src]
fn forward_checked(start: isize, n: usize) -> Option<isize>
[src]
fn backward_checked(start: isize, n: usize) -> Option<isize>
[src]
impl<'_, '_> Sub<&'_ isize> for &'_ isize
[src]
type Output = <isize as Sub<isize>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &isize) -> <isize as Sub<isize>>::Output
[src]
impl<'_> Sub<&'_ isize> for isize
[src]
type Output = <isize as Sub<isize>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &isize) -> <isize as Sub<isize>>::Output
[src]
impl Sub<isize> for isize
[src]
type Output = isize
The resulting type after applying the -
operator.
fn sub(self, other: isize) -> isize
[src]
impl<'a> Sub<isize> for &'a isize
[src]
type Output = <isize as Sub<isize>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: isize) -> <isize as Sub<isize>>::Output
[src]
impl<'_> SubAssign<&'_ isize> for isize
[src]1.22.0
fn sub_assign(&mut self, other: &isize)
[src]
impl SubAssign<isize> for isize
[src]1.8.0
fn sub_assign(&mut self, other: isize)
[src]
impl<'a> Sum<&'a isize> for isize
[src]1.12.0
impl Sum<isize> for isize
[src]1.12.0
impl TryFrom<i128> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i128) -> Result<isize, <isize as TryFrom<i128>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i32> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(value: i32) -> Result<isize, <isize as TryFrom<i32>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i64> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(value: i64) -> Result<isize, <isize as TryFrom<i64>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u128> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u128) -> Result<isize, <isize as TryFrom<u128>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u16> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(value: u16) -> Result<isize, <isize as TryFrom<u16>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u32> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(value: u32) -> Result<isize, <isize as TryFrom<u32>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u64> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u64) -> Result<isize, <isize as TryFrom<u64>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<usize> for isize
[src]1.34.0
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: usize) -> Result<isize, <isize as TryFrom<usize>>::Error>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl UpperExp for isize
[src]1.42.0
impl UpperHex for isize
[src]
impl RefUnwindSafe for isize
impl Send for isize
impl Sync for isize
impl Unpin for isize
impl UnwindSafe for isize
impl<T> Any for T where
Â Â Â Â T: 'static + ?Sized,Â
[src]
impl<T> Borrow<T> for T where
Â Â Â Â T: ?Sized,Â
[src]
fn borrow(&self) -> &Tâ“˜Notable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
Â Â Â Â F: Unpin + Future + ?Sized,Â
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
Â Â Â Â I: Iterator + ?Sized,Â
type Item = <I as Iterator>::Item;
impl<R:Â Read + ?Sized, '_> Read for &'_ mut R
impl<W:Â Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> BorrowMut<T> for T where
Â Â Â Â T: ?Sized,Â
[src]
fn borrow_mut(&mut self) -> &mut Tâ“˜Notable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
Â Â Â Â F: Unpin + Future + ?Sized,Â
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
Â Â Â Â I: Iterator + ?Sized,Â
type Item = <I as Iterator>::Item;
impl<R:Â Read + ?Sized, '_> Read for &'_ mut R
impl<W:Â Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
Â Â Â Â U: From<T>,Â
[src]
impl<T> ToOwned for T where
Â Â Â Â T: Clone,Â
[src]
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
Â Â Â Â T: Display + ?Sized,Â
[src]
impl<T, U> TryFrom<U> for T where
Â Â Â Â U: Into<T>,Â
[src]
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
Â Â Â Â U: TryFrom<T>,Â
[src]
Â© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/primitive.isize.html