#include <sparse_ops.h>
Applies softmax to a batched N-D SparseTensor
.
The inputs represent an N-D SparseTensor with logical shape [..., B, C]
(where N >= 2
), and with indices sorted in the canonical lexicographic order.
This op is equivalent to applying the normal tf.nn.softmax()
to each innermost logical submatrix with shape [B, C]
, but with the catch that the implicitly zero elements do not participate. Specifically, the algorithm is equivalent to the following:
(1) Applies tf.nn.softmax()
to a densified view of each innermost submatrix with shape [B, C]
, along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.
Hence, the SparseTensor
result has exactly the same non-zero indices and shape.
Arguments:
NNZ x R
matrix with the indices of non-empty values in a SparseTensor, in canonical ordering.NNZ
non-empty values corresponding to sp_indices
.Returns:
Output
: 1-D. The NNZ
values for the result SparseTensor
. Constructors and Destructors | |
---|---|
SparseSoftmax(const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape) |
Public attributes | |
---|---|
operation | |
output |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
Operation operation
::tensorflow::Output output
SparseSoftmax( const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/sparse-softmax