View source on GitHub |
Layer that concatenates a list of inputs.
tf.keras.layers.Concatenate( axis=-1, **kwargs )
It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs.
x = np.arange(20).reshape(2, 2, 5) print(x) [[[ 0 1 2 3 4] [ 5 6 7 8 9]] [[10 11 12 13 14] [15 16 17 18 19]]] y = np.arange(20, 30).reshape(2, 1, 5) print(y) [[[20 21 22 23 24]] [[25 26 27 28 29]]] tf.keras.layers.Concatenate(axis=1)([x, y]) <tf.Tensor: shape=(2, 3, 5), dtype=int64, numpy= array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [20, 21, 22, 23, 24]], [[10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [25, 26, 27, 28, 29]]])>
x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) concatted = tf.keras.layers.Concatenate()([x1, x2]) concatted.shape TensorShape([5, 16])
Arguments | |
---|---|
axis | Axis along which to concatenate. |
**kwargs | standard layer keyword arguments. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/Concatenate