View source on GitHub |
Computes the mean squared logarithmic error between y_true
and y_pred
.
tf.keras.losses.MSLE( y_true, y_pred )
loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_squared_logarithmic_error(y_true, y_pred) assert loss.shape == (2,) y_true = np.maximum(y_true, 1e-7) y_pred = np.maximum(y_pred, 1e-7) assert np.allclose( loss.numpy(), np.mean( np.square(np.log(y_true + 1.) - np.log(y_pred + 1.)), axis=-1))
Args | |
---|---|
y_true | Ground truth values. shape = [batch_size, d0, .. dN] . |
y_pred | The predicted values. shape = [batch_size, d0, .. dN] . |
Returns | |
---|---|
Mean squared logarithmic error values. shape = [batch_size, d0, .. dN-1] . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/losses/MSLE