tf.contrib.data.rejection_resample( class_func, target_dist, initial_dist=None, seed=None )
Defined in tensorflow/contrib/data/python/ops/resampling.py
.
See the guide: Dataset Input Pipeline > Transformations on existing datasets
A transformation that resamples a dataset to achieve a target distribution.
NOTE Resampling is performed via rejection sampling; some fraction of the input values will be dropped.
class_func
: A function mapping an element of the input dataset to a scalar tf.int32
tensor. Values should be in [0, num_classes)
.target_dist
: A floating point type tensor, shaped [num_classes]
.initial_dist
: (Optional.) A floating point type tensor, shaped [num_classes]
. If not provided, the true class distribution is estimated live in a streaming fashion.seed
: (Optional.) Python integer seed for the resampler.A Dataset
transformation function, which can be passed to tf.data.Dataset.apply
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/data/rejection_resample