W3cubDocs

/TensorFlow Python

tf.required_space_to_batch_paddings

tf.required_space_to_batch_paddings(
    input_shape,
    block_shape,
    base_paddings=None,
    name=None
)

Defined in tensorflow/python/ops/array_ops.py.

See the guide: Tensor Transformations > Slicing and Joining

Calculate padding required to make block_shape divide input_shape.

This function can be used to calculate a suitable paddings argument for use with space_to_batch_nd and batch_to_space_nd.

Args:

  • input_shape: int32 Tensor of shape [N].
  • block_shape: int32 Tensor of shape [N].
  • base_paddings: Optional int32 Tensor of shape [N, 2]. Specifies the minimum amount of padding to use. All elements must be >= 0. If not specified, defaults to 0.
  • name: string. Optional name prefix.

Returns:

(paddings, crops), where:

paddings and crops are int32 Tensors of rank 2 and shape [N, 2] * satisfying: paddings[i, 0] = base_paddings[i, 0]. 0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i] (input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0

crops[i, 0] = 0
crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]

Raises: ValueError if called with incompatible shapes.

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/required_space_to_batch_paddings