Note
Click here to download the full example code
Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel.
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_blobs # we create 40 separable points X, y = make_blobs(n_samples=40, centers=2, random_state=6) # fit the model, don't regularize for illustration purposes clf = svm.SVC(kernel='linear', C=1000) clf.fit(X, y) plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired) # plot the decision function ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() # create grid to evaluate model xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) YY, XX = np.meshgrid(yy, xx) xy = np.vstack([XX.ravel(), YY.ravel()]).T Z = clf.decision_function(xy).reshape(XX.shape) # plot decision boundary and margins ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) # plot support vectors ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidth=1, facecolors='none', edgecolors='k') plt.show()
Total running time of the script: ( 0 minutes 0.025 seconds)
Gallery generated by Sphinx-Gallery
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html