Note
Click here to download the full example code
This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification scores.
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.feature_selection import SelectPercentile, chi2 from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline from sklearn.svm import SVC # ############################################################################# # Import some data to play with X, y = load_digits(return_X_y=True) # Throw away data, to be in the curse of dimension settings X = X[:200] y = y[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) # ############################################################################# # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = SelectPercentile(chi2) clf = Pipeline([('anova', transform), ('svc', SVC(gamma="auto"))]) # ############################################################################# # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using 1 CPU this_scores = cross_val_score(clf, X, y, cv=5, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
Total running time of the script: ( 0 minutes 1.323 seconds)
Gallery generated by Sphinx-Gallery
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/svm/plot_svm_anova.html