Series.add(self, other[, level, fill_value, …]) | Return Addition of series and other, element-wise (binary operator add). |
Series.sub(self, other[, level, fill_value, …]) | Return Subtraction of series and other, element-wise (binary operator sub). |
Series.mul(self, other[, level, fill_value, …]) | Return Multiplication of series and other, element-wise (binary operator mul). |
Series.div(self, other[, level, fill_value, …]) | Return Floating division of series and other, element-wise (binary operator truediv). |
Series.truediv(self, other[, level, …]) | Return Floating division of series and other, element-wise (binary operator truediv). |
Series.floordiv(self, other[, level, …]) | Return Integer division of series and other, element-wise (binary operator floordiv). |
Series.mod(self, other[, level, fill_value, …]) | Return Modulo of series and other, element-wise (binary operator mod). |
Series.pow(self, other[, level, fill_value, …]) | Return Exponential power of series and other, element-wise (binary operator pow). |
Series.radd(self, other[, level, …]) | Return Addition of series and other, element-wise (binary operator radd). |
Series.rsub(self, other[, level, …]) | Return Subtraction of series and other, element-wise (binary operator rsub). |
Series.rmul(self, other[, level, …]) | Return Multiplication of series and other, element-wise (binary operator rmul). |
Series.rdiv(self, other[, level, …]) | Return Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rtruediv(self, other[, level, …]) | Return Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rfloordiv(self, other[, level, …]) | Return Integer division of series and other, element-wise (binary operator rfloordiv). |
Series.rmod(self, other[, level, …]) | Return Modulo of series and other, element-wise (binary operator rmod). |
Series.rpow(self, other[, level, …]) | Return Exponential power of series and other, element-wise (binary operator rpow). |
Series.combine(self, other, func[, fill_value]) | Combine the Series with a Series or scalar according to func. |
Series.combine_first(self, other) | Combine Series values, choosing the calling Series’s values first. |
Series.round(self[, decimals]) | Round each value in a Series to the given number of decimals. |
Series.lt(self, other[, level, fill_value, axis]) | Return Less than of series and other, element-wise (binary operator lt). |
Series.gt(self, other[, level, fill_value, axis]) | Return Greater than of series and other, element-wise (binary operator gt). |
Series.le(self, other[, level, fill_value, axis]) | Return Less than or equal to of series and other, element-wise (binary operator le). |
Series.ge(self, other[, level, fill_value, axis]) | Return Greater than or equal to of series and other, element-wise (binary operator ge). |
Series.ne(self, other[, level, fill_value, axis]) | Return Not equal to of series and other, element-wise (binary operator ne). |
Series.eq(self, other[, level, fill_value, axis]) | Return Equal to of series and other, element-wise (binary operator eq). |
Series.product(self[, axis, skipna, level, …]) | Return the product of the values for the requested axis. |
Series.dot(self, other) | Compute the dot product between the Series and the columns of other. |
Series.apply(self, func[, convert_dtype, args]) | Invoke function on values of Series. |
Series.agg(self, func[, axis]) | Aggregate using one or more operations over the specified axis. |
Series.aggregate(self, func[, axis]) | Aggregate using one or more operations over the specified axis. |
Series.transform(self, func[, axis]) | Call func on self producing a Series with transformed values and that has the same axis length as self. |
Series.map(self, arg[, na_action]) | Map values of Series according to input correspondence. |
Series.groupby(self[, by, axis, level, …]) | Group DataFrame or Series using a mapper or by a Series of columns. |
Series.rolling(self, window[, min_periods, …]) | Provide rolling window calculations. |
Series.expanding(self[, min_periods, …]) | Provide expanding transformations. |
Series.ewm(self[, com, span, halflife, …]) | Provide exponential weighted functions. |
Series.pipe(self, func, \*args, \*\*kwargs) | Apply func(self, *args, **kwargs). |
Series.abs(self) | Return a Series/DataFrame with absolute numeric value of each element. |
Series.all(self[, axis, bool_only, skipna, …]) | Return whether all elements are True, potentially over an axis. |
Series.any(self[, axis, bool_only, skipna, …]) | Return whether any element is True, potentially over an axis. |
Series.autocorr(self[, lag]) | Compute the lag-N autocorrelation. |
Series.between(self, left, right[, inclusive]) | Return boolean Series equivalent to left <= series <= right. |
Series.clip(self[, lower, upper, axis, inplace]) | Trim values at input threshold(s). |
Series.clip_lower(self, threshold[, axis, …]) | (DEPRECATED) Trim values below a given threshold. |
Series.clip_upper(self, threshold[, axis, …]) | (DEPRECATED) Trim values above a given threshold. |
Series.corr(self, other[, method, min_periods]) | Compute correlation with other Series, excluding missing values. |
Series.count(self[, level]) | Return number of non-NA/null observations in the Series. |
Series.cov(self, other[, min_periods]) | Compute covariance with Series, excluding missing values. |
Series.cummax(self[, axis, skipna]) | Return cumulative maximum over a DataFrame or Series axis. |
Series.cummin(self[, axis, skipna]) | Return cumulative minimum over a DataFrame or Series axis. |
Series.cumprod(self[, axis, skipna]) | Return cumulative product over a DataFrame or Series axis. |
Series.cumsum(self[, axis, skipna]) | Return cumulative sum over a DataFrame or Series axis. |
Series.describe(self[, percentiles, …]) | Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. |
Series.diff(self[, periods]) | First discrete difference of element. |
Series.factorize(self[, sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable. |
Series.kurt(self[, axis, skipna, level, …]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.mad(self[, axis, skipna, level]) | Return the mean absolute deviation of the values for the requested axis. |
Series.max(self[, axis, skipna, level, …]) | Return the maximum of the values for the requested axis. |
Series.mean(self[, axis, skipna, level, …]) | Return the mean of the values for the requested axis. |
Series.median(self[, axis, skipna, level, …]) | Return the median of the values for the requested axis. |
Series.min(self[, axis, skipna, level, …]) | Return the minimum of the values for the requested axis. |
Series.mode(self[, dropna]) | Return the mode(s) of the dataset. |
Series.nlargest(self[, n, keep]) | Return the largest n elements. |
Series.nsmallest(self[, n, keep]) | Return the smallest n elements. |
Series.pct_change(self[, periods, …]) | Percentage change between the current and a prior element. |
Series.prod(self[, axis, skipna, level, …]) | Return the product of the values for the requested axis. |
Series.quantile(self[, q, interpolation]) | Return value at the given quantile. |
Series.rank(self[, axis, method, …]) | Compute numerical data ranks (1 through n) along axis. |
Series.sem(self[, axis, skipna, level, …]) | Return unbiased standard error of the mean over requested axis. |
Series.skew(self[, axis, skipna, level, …]) | Return unbiased skew over requested axis Normalized by N-1. |
Series.std(self[, axis, skipna, level, …]) | Return sample standard deviation over requested axis. |
Series.sum(self[, axis, skipna, level, …]) | Return the sum of the values for the requested axis. |
Series.var(self[, axis, skipna, level, …]) | Return unbiased variance over requested axis. |
Series.kurtosis(self[, axis, skipna, level, …]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.unique(self) | Return unique values of Series object. |
Series.nunique(self[, dropna]) | Return number of unique elements in the object. |
Series.is_unique | Return boolean if values in the object are unique. |
Series.is_monotonic | Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_increasing | Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_decreasing | Return boolean if values in the object are monotonic_decreasing. |
Series.value_counts(self[, normalize, sort, …]) | Return a Series containing counts of unique values. |
Series.compound(self[, axis, skipna, level]) | (DEPRECATED) Return the compound percentage of the values for the requested axis. |
Series.align(self, other[, join, axis, …]) | Align two objects on their axes with the specified join method for each axis Index. |
Series.drop(self[, labels, axis, index, …]) | Return Series with specified index labels removed. |
Series.droplevel(self, level[, axis]) | Return DataFrame with requested index / column level(s) removed. |
Series.drop_duplicates(self[, keep, inplace]) | Return Series with duplicate values removed. |
Series.duplicated(self[, keep]) | Indicate duplicate Series values. |
Series.equals(self, other) | Test whether two objects contain the same elements. |
Series.first(self, offset) | Convenience method for subsetting initial periods of time series data based on a date offset. |
Series.head(self[, n]) | Return the first n rows. |
Series.idxmax(self[, axis, skipna]) | Return the row label of the maximum value. |
Series.idxmin(self[, axis, skipna]) | Return the row label of the minimum value. |
Series.isin(self, values) | Check whether values are contained in Series. |
Series.last(self, offset) | Convenience method for subsetting final periods of time series data based on a date offset. |
Series.reindex(self[, index]) | Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. |
Series.reindex_like(self, other[, method, …]) | Return an object with matching indices as other object. |
Series.rename(self[, index]) | Alter Series index labels or name. |
Series.rename_axis(self[, mapper, index, …]) | Set the name of the axis for the index or columns. |
Series.reset_index(self[, level, drop, …]) | Generate a new DataFrame or Series with the index reset. |
Series.sample(self[, n, frac, replace, …]) | Return a random sample of items from an axis of object. |
Series.set_axis(self, labels[, axis, inplace]) | Assign desired index to given axis. |
Series.take(self, indices[, axis, is_copy]) | Return the elements in the given positional indices along an axis. |
Series.tail(self[, n]) | Return the last n rows. |
Series.truncate(self[, before, after, axis, …]) | Truncate a Series or DataFrame before and after some index value. |
Series.where(self, cond[, other, inplace, …]) | Replace values where the condition is False. |
Series.mask(self, cond[, other, inplace, …]) | Replace values where the condition is True. |
Series.add_prefix(self, prefix) | Prefix labels with string prefix. |
Series.add_suffix(self, suffix) | Suffix labels with string suffix. |
Series.filter(self[, items, like, regex, axis]) | Subset rows or columns of dataframe according to labels in the specified index. |
Series.argsort(self[, axis, kind, order]) | Override ndarray.argsort. |
Series.argmin(self[, axis, skipna]) | (DEPRECATED) Return the row label of the minimum value. |
Series.argmax(self[, axis, skipna]) | (DEPRECATED) Return the row label of the maximum value. |
Series.reorder_levels(self, order) | Rearrange index levels using input order. |
Series.sort_values(self[, axis, ascending, …]) | Sort by the values. |
Series.sort_index(self[, axis, level, …]) | Sort Series by index labels. |
Series.swaplevel(self[, i, j, copy]) | Swap levels i and j in a MultiIndex. |
Series.unstack(self[, level, fill_value]) | Unstack, a.k.a. |
Series.explode(self) | Transform each element of a list-like to a row, replicating the index values. |
Series.searchsorted(self, value[, side, sorter]) | Find indices where elements should be inserted to maintain order. |
Series.ravel(self[, order]) | Return the flattened underlying data as an ndarray. |
Series.repeat(self, repeats[, axis]) | Repeat elements of a Series. |
Series.squeeze(self[, axis]) | Squeeze 1 dimensional axis objects into scalars. |
Series.view(self[, dtype]) | Create a new view of the Series. |
Series.asfreq(self, freq[, method, how, …]) | Convert TimeSeries to specified frequency. |
Series.asof(self, where[, subset]) | Return the last row(s) without any NaNs before where. |
Series.shift(self[, periods, freq, axis, …]) | Shift index by desired number of periods with an optional time freq. |
Series.first_valid_index(self) | Return index for first non-NA/null value. |
Series.last_valid_index(self) | Return index for last non-NA/null value. |
Series.resample(self, rule[, how, axis, …]) | Resample time-series data. |
Series.tz_convert(self, tz[, axis, level, copy]) | Convert tz-aware axis to target time zone. |
Series.tz_localize(self, tz[, axis, level, …]) | Localize tz-naive index of a Series or DataFrame to target time zone. |
Series.at_time(self, time[, asof, axis]) | Select values at particular time of day (e.g. |
Series.between_time(self, start_time, end_time) | Select values between particular times of the day (e.g., 9:00-9:30 AM). |
Series.tshift(self[, periods, freq, axis]) | Shift the time index, using the index’s frequency if available. |
Series.slice_shift(self[, periods, axis]) | Equivalent to shift without copying data. |
Pandas provides dtype-specific methods under various accessors. These are separate namespaces within Series that only apply to specific data types.
Series.dt.to_period(self, \*args, \*\*kwargs) | Cast to PeriodArray/Index at a particular frequency. |
Series.dt.to_pydatetime(self) | Return the data as an array of native Python datetime objects. |
Series.dt.tz_localize(self, \*args, \*\*kwargs) | Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. |
Series.dt.tz_convert(self, \*args, \*\*kwargs) | Convert tz-aware Datetime Array/Index from one time zone to another. |
Series.dt.normalize(self, \*args, \*\*kwargs) | Convert times to midnight. |
Series.dt.strftime(self, \*args, \*\*kwargs) | Convert to Index using specified date_format. |
Series.dt.round(self, \*args, \*\*kwargs) | Perform round operation on the data to the specified freq. |
Series.dt.floor(self, \*args, \*\*kwargs) | Perform floor operation on the data to the specified freq. |
Series.dt.ceil(self, \*args, \*\*kwargs) | Perform ceil operation on the data to the specified freq. |
Series.dt.month_name(self, \*args, \*\*kwargs) | Return the month names of the DateTimeIndex with specified locale. |
Series.dt.day_name(self, \*args, \*\*kwargs) | Return the day names of the DateTimeIndex with specified locale. |
Series.str.capitalize(self) | Convert strings in the Series/Index to be capitalized. |
Series.str.casefold(self) | Convert strings in the Series/Index to be casefolded. |
Series.str.cat(self[, others, sep, na_rep, join]) | Concatenate strings in the Series/Index with given separator. |
Series.str.center(self, width[, fillchar]) | Filling left and right side of strings in the Series/Index with an additional character. |
Series.str.contains(self, pat[, case, …]) | Test if pattern or regex is contained within a string of a Series or Index. |
Series.str.count(self, pat[, flags]) | Count occurrences of pattern in each string of the Series/Index. |
Series.str.decode(self, encoding[, errors]) | Decode character string in the Series/Index using indicated encoding. |
Series.str.encode(self, encoding[, errors]) | Encode character string in the Series/Index using indicated encoding. |
Series.str.endswith(self, pat[, na]) | Test if the end of each string element matches a pattern. |
Series.str.extract(self, pat[, flags, expand]) | Extract capture groups in the regex pat as columns in a DataFrame. |
Series.str.extractall(self, pat[, flags]) | For each subject string in the Series, extract groups from all matches of regular expression pat. |
Series.str.find(self, sub[, start, end]) | Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.findall(self, pat[, flags]) | Find all occurrences of pattern or regular expression in the Series/Index. |
Series.str.get(self, i) | Extract element from each component at specified position. |
Series.str.index(self, sub[, start, end]) | Return lowest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.join(self, sep) | Join lists contained as elements in the Series/Index with passed delimiter. |
Series.str.len(self) | Compute the length of each element in the Series/Index. |
Series.str.ljust(self, width[, fillchar]) | Filling right side of strings in the Series/Index with an additional character. |
Series.str.lower(self) | Convert strings in the Series/Index to lowercase. |
Series.str.lstrip(self[, to_strip]) | Remove leading and trailing characters. |
Series.str.match(self, pat[, case, flags, na]) | Determine if each string matches a regular expression. |
Series.str.normalize(self, form) | Return the Unicode normal form for the strings in the Series/Index. |
Series.str.pad(self, width[, side, fillchar]) | Pad strings in the Series/Index up to width. |
Series.str.partition(self[, sep, expand]) | Split the string at the first occurrence of sep. |
Series.str.repeat(self, repeats) | Duplicate each string in the Series or Index. |
Series.str.replace(self, pat, repl[, n, …]) | Replace occurrences of pattern/regex in the Series/Index with some other string. |
Series.str.rfind(self, sub[, start, end]) | Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.rindex(self, sub[, start, end]) | Return highest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.rjust(self, width[, fillchar]) | Filling left side of strings in the Series/Index with an additional character. |
Series.str.rpartition(self[, sep, expand]) | Split the string at the last occurrence of sep. |
Series.str.rstrip(self[, to_strip]) | Remove leading and trailing characters. |
Series.str.slice(self[, start, stop, step]) | Slice substrings from each element in the Series or Index. |
Series.str.slice_replace(self[, start, …]) | Replace a positional slice of a string with another value. |
Series.str.split(self[, pat, n, expand]) | Split strings around given separator/delimiter. |
Series.str.rsplit(self[, pat, n, expand]) | Split strings around given separator/delimiter. |
Series.str.startswith(self, pat[, na]) | Test if the start of each string element matches a pattern. |
Series.str.strip(self[, to_strip]) | Remove leading and trailing characters. |
Series.str.swapcase(self) | Convert strings in the Series/Index to be swapcased. |
Series.str.title(self) | Convert strings in the Series/Index to titlecase. |
Series.str.translate(self, table) | Map all characters in the string through the given mapping table. |
Series.str.upper(self) | Convert strings in the Series/Index to uppercase. |
Series.str.wrap(self, width, \*\*kwargs) | Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. |
Series.str.zfill(self, width) | Pad strings in the Series/Index by prepending ‘0’ characters. |
Series.str.isalnum(self) | Check whether all characters in each string are alphanumeric. |
Series.str.isalpha(self) | Check whether all characters in each string are alphabetic. |
Series.str.isdigit(self) | Check whether all characters in each string are digits. |
Series.str.isspace(self) | Check whether all characters in each string are whitespace. |
Series.str.islower(self) | Check whether all characters in each string are lowercase. |
Series.str.isupper(self) | Check whether all characters in each string are uppercase. |
Series.str.istitle(self) | Check whether all characters in each string are titlecase. |
Series.str.isnumeric(self) | Check whether all characters in each string are numeric. |
Series.str.isdecimal(self) | Check whether all characters in each string are decimal. |
Series.str.get_dummies(self[, sep]) | Split each string in the Series by sep and return a DataFrame of dummy/indicator variables. |
Series.to_pickle(self, path[, compression, …]) | Pickle (serialize) object to file. |
Series.to_csv(self, \*args, \*\*kwargs) | Write object to a comma-separated values (csv) file. |
Series.to_dict(self[, into]) | Convert Series to {label -> value} dict or dict-like object. |
Series.to_excel(self, excel_writer[, …]) | Write object to an Excel sheet. |
Series.to_frame(self[, name]) | Convert Series to DataFrame. |
Series.to_xarray(self) | Return an xarray object from the pandas object. |
Series.to_hdf(self, path_or_buf, key, \*\*kwargs) | Write the contained data to an HDF5 file using HDFStore. |
Series.to_sql(self, name, con[, schema, …]) | Write records stored in a DataFrame to a SQL database. |
Series.to_msgpack(self[, path_or_buf, encoding]) | (DEPRECATED) Serialize object to input file path using msgpack format. |
Series.to_json(self[, path_or_buf, orient, …]) | Convert the object to a JSON string. |
Series.to_sparse(self[, kind, fill_value]) | (DEPRECATED) Convert Series to SparseSeries. |
Series.to_dense(self) | (DEPRECATED) Return dense representation of Series/DataFrame (as opposed to sparse). |
Series.to_string(self[, buf, na_rep, …]) | Render a string representation of the Series. |
Series.to_clipboard(self[, excel, sep]) | Copy object to the system clipboard. |
Series.to_latex(self[, buf, columns, …]) | Render an object to a LaTeX tabular environment table. |