tf.feature_column.numeric_column( key, shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None )
Defined in tensorflow/python/feature_column/feature_column.py
.
Represents real valued or numerical features.
Example:
price = numeric_column('price') columns = [price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) # or bucketized_price = bucketized_column(price, boundaries=[...]) columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns)
key
: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature Tensor
objects, and feature columns.shape
: An iterable of integers specifies the shape of the Tensor
. An integer can be given which means a single dimension Tensor
with given width. The Tensor
representing the column will have the shape of [batch_size] + shape
.default_value
: A single value compatible with dtype
or an iterable of values compatible with dtype
which the column takes on during tf.Example
parsing if data is missing. A default value of None
will cause tf.parse_example
to fail if an example does not contain this column. If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the default_value
should be equal to the given shape
.dtype
: defines the type of values. Default value is tf.float32
. Must be a non-quantized, real integer or floating point type.normalizer_fn
: If not None
, a function that can be used to normalize the value of the tensor after default_value
is applied for parsing. Normalizer function takes the input Tensor
as its argument, and returns the output Tensor
. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations.A _NumericColumn
.
TypeError
: if any dimension in shape is not an intValueError
: if any dimension in shape is not a positive integerTypeError
: if default_value
is an iterable but not compatible with shape
TypeError
: if default_value
is not compatible with dtype
.ValueError
: if dtype
is not convertible to tf.float32
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/numeric_column