Defined in header <algorithm> | ||
---|---|---|
Call signature | ||
template< std::input_iterator I1, std::sentinel_for<I1> S1, std::input_iterator I2, std::sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr mismatch_result<I1, I2> mismatch( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} ); | (1) | (since C++20) |
template< ranges::input_range R1, ranges::input_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_comparable< ranges::iterator_t<R1>, ranges::iterator_t<R2>, Pred, Proj1, Proj2> constexpr mismatch_result<ranges::borrowed_iterator_t<R1>, ranges::borrowed_iterator_t<R2>> mismatch( R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} ); | (2) | (since C++20) |
Helper types | ||
template< class I1, class I2 > using mismatch_result = ranges::in_in_result<I1, I2>; | (3) | (since C++20) |
Returns the first mismatching pair of projected elements from two ranges: one defined by [
first1
,
last1
)
or r1
and another defined by [
first2
,
last2
)
or r2
.
p
.r
as the source range, as if using ranges::begin(r)
as first
and ranges::end(r)
as last
.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
first1, last1 | - | an iterator-sentinel pair denoting the first range of the elements to compare |
r1 | - | the first range of the elements to compare |
first2, last2 | - | an iterator-sentinel pair denoting the second range of the elements to compare |
r2 | - | the second range of the elements to compare |
pred | - | predicate to apply to the projected elements |
proj1 | - | projection to apply to the first range of elements |
proj2 | - | projection to apply to the second range of elements |
ranges::mismatch_result
with iterators to the first two non-equal elements.
If no mismatches are found when the comparison reaches last1
or last2
, whichever happens first, the object holds the end iterator and the corresponding iterator from the other range.
At most std::min(last1 - first1, last2 - first2)
applications of the predicate and corresponding projections.
This program determines the longest substring that is simultaneously found at the very beginning and at the very end of the given string, in reverse order (possibly overlapping).
#include <algorithm> #include <iostream> #include <ranges> #include <string_view> [[nodiscard]] constexpr std::string_view mirror_ends(const std::string_view in) { const auto end = std::ranges::mismatch(in, in | std::views::reverse).in1; return {in.cbegin(), end}; } int main() { std::cout << mirror_ends("abXYZba") << '\n' << mirror_ends("abca") << '\n' << mirror_ends("ABBA") << '\n' << mirror_ends("level") << '\n'; using namespace std::literals::string_view_literals; static_assert("123"sv == mirror_ends("123!@#321")); static_assert("radar"sv == mirror_ends("radar")); }
Output:
(C++20) | determines if two sets of elements are the same (niebloid) |
(C++20)(C++20)(C++20) | finds the first element satisfying specific criteria (niebloid) |
(C++20) | returns true if one range is lexicographically less than another (niebloid) |
(C++20) | searches for a range of elements (niebloid) |
finds the first position where two ranges differ (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/mismatch