Defined in header <algorithm> | ||
---|---|---|
Call signature | ||
template< std::forward_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr ranges::subrange<I1> search( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} ); | (1) | (since C++20) |
template< ranges::forward_range R1, ranges::forward_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, Pred, Proj1, Proj2> constexpr ranges::borrowed_subrange_t<R1> search( R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} ); | (2) | (since C++20) |
[
first2
,
last2
)
in the range [
first1
,
last1
)
. Elements are compared using binary predicate pred
after being projected with proj2
and proj1
, respectively.r1
as the first source range and r2
as the second source range, as if using ranges::begin(r1)
as first1
, ranges::end(r1)
as last1
, ranges::begin(r2)
as first2
, and ranges::end(r2)
as last2
.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
first1, last1 | - | the range of elements to examine (aka haystack) |
first2, last2 | - | the range of elements to search for (aka needle) |
r1 | - | the range of elements to examine (aka haystack) |
r2 | - | the range of elements to search for (aka needle) |
pred | - | binary predicate to apply to the projected elements |
proj1 | - | projection to apply to the elements in the first range |
proj2 | - | projection to apply to the elements in the second range |
ranges::subrange
value that is the first occurrence of the sequence [
first2
,
last2
)
(aka needle) in the range [
first1
,
last1
)
(aka haystack), after application of the projections proj1
and proj2
to the elements of both sequences respectively with consequencing application of the binary predicate pred
to compare projected elements. If no such occurrence is found, ranges::subrange{last1, last1}
is returned. If the range to search for (aka.
first2 == last2
, then the ranges::subrange{first1, first1}
is returned.At most S * N
applications of the corresponding predicate and each projection, where
(1) S = ranges::distance(first2, last2)
and N = ranges::distance(first1, last1)
;
(2) S = ranges::distance(r2)
and N = ranges::distance(r1)
.
struct search_fn { template<std::forward_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr ranges::subrange<I1> operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { for (;; ++first1) { I1 it1 = first1; for (I2 it2 = first2;; ++it1, ++it2) { if (it2 == last2) return {first1, it1}; if (it1 == last1) return {it1, it1}; if (!std::invoke(pred, std::invoke(proj1, *it1), std::invoke(proj2, *it2))) break; } } } template<ranges::forward_range R1, ranges::forward_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, Pred, Proj1, Proj2> constexpr ranges::borrowed_subrange_t<R1> operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (*this)(ranges::begin(r1), ranges::end(r1), ranges::begin(r2), ranges::end(r2), std::move(pred), std::move(proj1), std::move(proj2)); } }; inline constexpr search_fn search {}; |
#include <algorithm> #include <cctype> #include <iostream> #include <iterator> #include <string_view> using namespace std::literals; void print(int id, const auto& haystack, const auto& needle, const auto& found) { std::cout << id << ") search(\"" << haystack << "\", \"" << needle << "\"); "; const auto first = std::distance(haystack.begin(), found.begin()); const auto last = std::distance(haystack.begin(), found.end()); if (found.empty()) std::cout << "not found;"; else { std::cout << "found: \""; for (const auto x : found) std::cout << x; std::cout << "\";"; } std::cout << " subrange: {" << first << ", " << last << "}\n"; } int main() { constexpr auto haystack {"abcd abcd"sv}; constexpr auto needle {"bcd"sv}; // the search uses iterator pairs begin()/end(): constexpr auto found1 = std::ranges::search( haystack.begin(), haystack.end(), needle.begin(), needle.end()); print(1, haystack, needle, found1); // the search uses ranges r1, r2: constexpr auto found2 = std::ranges::search(haystack, needle); print(2, haystack, needle, found2); // 'needle' range is empty: constexpr auto none {""sv}; constexpr auto found3 = std::ranges::search(haystack, none); print(3, haystack, none, found3); // 'needle' will not be found: constexpr auto awl {"efg"sv}; constexpr auto found4 = std::ranges::search(haystack, awl); print(4, haystack, awl, found4); // the search uses custom comparator and projections: constexpr auto bodkin {"234"sv}; auto found5 = std::ranges::search(haystack, bodkin, [](const int x, const int y) { return x == y; }, // pred [](const int x) { return std::toupper(x); }, // proj1 [](const int y) { return y + 'A' - '1'; }); // proj2 print(5, haystack, bodkin, found5); }
Output:
1) search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4} 2) search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4} 3) search("abcd abcd", ""); not found; subrange: {0, 0} 4) search("abcd abcd", "efg"); not found; subrange: {9, 9} 5) search("abcd abcd", "234"); found: "bcd"; subrange: {1, 4}
(C++20) | finds the first two adjacent items that are equal (or satisfy a given predicate) (niebloid) |
(C++20)(C++20)(C++20) | finds the first element satisfying specific criteria (niebloid) |
(C++20) | finds the last sequence of elements in a certain range (niebloid) |
(C++20) | searches for any one of a set of elements (niebloid) |
(C++23)(C++23) | checks if the range contains the given element or subrange (niebloid) |
(C++20) | returns true if one sequence is a subsequence of another (niebloid) |
(C++20) | finds the first position where two ranges differ (niebloid) |
(C++20) | searches for a number consecutive copies of an element in a range (niebloid) |
searches for a range of elements (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/search