Defined in header <algorithm> | ||
|---|---|---|
| Call signature | ||
template< std::random_access_iterator I, std::sentinel_for<I> S,
class Comp = ranges::less, class Proj = std::identity >
requires std::sortable<I, Comp, Proj>
constexpr I
push_heap( I first, S last, Comp comp = {}, Proj proj = {} );
| (1) | (since C++20) |
template< ranges::random_access_range R, class Comp = ranges::less,
class Proj = std::identity >
requires std::sortable<ranges::iterator_t<R>, Comp, Proj>
constexpr ranges::borrowed_iterator_t<R>
push_heap( R&& r, Comp comp = {}, Proj proj = {} );
| (2) | (since C++20) |
Inserts the element at the position last - 1 into the max heap defined by the range [first,Β last - 1).
comp and projection object proj.r as the range, as if using ranges::begin(r) as first and ranges::end(r) as last.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
| first, last | - | the range of elements defining the heap to modify |
| r | - | the range of elements defining the heap to modify |
| pred | - | predicate to apply to the projected elements |
| proj | - | projection to apply to the elements |
An iterator equal to last.
Given N = ranges::distance(first, last), at most \(\scriptsize \log{(N)}\)log(N) comparisons and \(\scriptsize 2\log{(N)}\)2log(N) projections.
A max heap is a range of elements [f,Β l), arranged with respect to comparator comp and projection proj, that has the following properties:
N = l - f, p = f[(i - 1) / 2], and q = f[i], for all 0 < i < N, the expression std::invoke(comp, std::invoke(proj, p), std::invoke(proj, q)) evaluates to false. ranges::push_heap, in \(\scriptsize \mathcal{O}(\log N)\)π(log N) time. ranges::pop_heap, in \(\scriptsize \mathcal{O}(\log N)\)π(log N) time. struct push_heap_fn
{
template<std::random_access_iterator I, std::sentinel_for<I> S,
class Comp = ranges::less, class Proj = std::identity>
requires std::sortable<I, Comp, Proj>
constexpr I
operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
{
const auto n {ranges::distance(first, last)};
const auto length {n};
if (n > 1)
{
I last {first + n};
n = (n - 2) / 2;
I i {first + n};
if (std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *--last)))
{
std::iter_value_t<I> v {ranges::iter_move(last)};
do
{
*last = ranges::iter_move(i);
last = i;
if (n == 0)
break;
n = (n - 1) / 2;
i = first + n;
} while (std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, v)));
*last = std::move(v);
}
}
return first + length;
}
template<ranges::random_access_range R, class Comp = ranges::less,
class Proj = std::identity>
requires std::sortable<ranges::iterator_t<R>, Comp, Proj>
constexpr ranges::borrowed_iterator_t<R>
operator()(R&& r, Comp comp = {}, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj));
}
};
inline constexpr push_heap_fn push_heap {}; |
#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>
void out(const auto& what, int n = 1)
{
while (n-- > 0)
std::cout << what;
}
void print(auto rem, auto const& v)
{
out(rem);
for (auto e : v)
out(e), out(' ');
out('\n');
}
void draw_heap(auto const& v);
int main()
{
std::vector<int> v {1, 6, 1, 8, 0, 3,};
print("source vector v: ", v);
std::ranges::make_heap(v);
print("after make_heap: ", v);
draw_heap(v);
v.push_back(9);
print("before push_heap: ", v);
draw_heap(v);
std::ranges::push_heap(v);
print("after push_heap: ", v);
draw_heap(v);
}
void draw_heap(auto const& v)
{
auto bails = [](int n, int w)
{
auto b = [](int w) { out("β"), out("β", w), out("β΄"), out("β", w), out("β"); };
if (!(n /= 2))
return;
for (out(' ', w); n-- > 0; )
b(w), out(' ', w + w + 1);
out('\n');
};
auto data = [](int n, int w, auto& first, auto last)
{
for (out(' ', w); n-- > 0 && first != last; ++first)
out(*first), out(' ', w + w + 1);
out('\n');
};
auto tier = [&](int t, int m, auto& first, auto last)
{
const int n {1 << t};
const int w {(1 << (m - t - 1)) - 1};
bails(n, w), data(n, w, first, last);
};
const int m {static_cast<int>(std::ceil(std::log2(1 + v.size())))};
auto first {v.cbegin()};
for (int i {}; i != m; ++i)
tier(i, m, first, v.cend());
}Output:
source vector v: 1 6 1 8 0 3 after make_heap: 8 6 3 1 0 1 8 βββ΄ββ 6 3 ββ΄β ββ΄β 1 0 1 before push_heap: 8 6 3 1 0 1 9 8 βββ΄ββ 6 3 ββ΄β ββ΄β 1 0 1 9 after push_heap: 9 6 8 1 0 1 3 9 βββ΄ββ 6 8 ββ΄β ββ΄β 1 0 1 3
|
(C++20) | checks if the given range is a max heap (niebloid) |
|
(C++20) | finds the largest subrange that is a max heap (niebloid) |
|
(C++20) | creates a max heap out of a range of elements (niebloid) |
|
(C++20) | removes the largest element from a max heap (niebloid) |
|
(C++20) | turns a max heap into a range of elements sorted in ascending order (niebloid) |
| adds an element to a max heap (function template) |
Β© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/push_heap