W3cubDocs

/C++

std::ranges::is_heap_until

Defined in header <algorithm>
Call signature
template< std::random_access_iterator I, std::sentinel_for<I> S,
          class Proj = std::identity, std::indirect_strict_weak_order<
          std::projected<I, Proj>> Comp = ranges::less >
constexpr I is_heap_until( I first, S last, Comp comp = {}, Proj proj = {} );
(1) (since C++20)
template< ranges::random_access_range R, class Proj = std::identity,
          std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>>
          Comp = ranges::less >
constexpr ranges::borrowed_iterator_t<R>
    is_heap_until( R&& r, Comp comp = {}, Proj proj = {} );
(2) (since C++20)

Examines the range [first,Β last) and finds the largest range beginning at first which is a max heap.

1) Elements are compared using the given binary comparison function comp and projection object proj.
2) Same as (1), but uses r as the range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to examine
r - the range of elements to examine
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

The upper bound of the largest range beginning at first which is a max heap. That is, the last iterator it for which range [first,Β it) is a max heap with respect to comp and proj.

Complexity

Linear in the distance between first and last.

Notes

A max heap is a range of elements [f,Β l), arranged with respect to comparator comp and projection proj, that has the following properties:

  • With N = l - f, p = f[(i - 1) / 2], and q = f[i], for all 0 < i < N, the expression std::invoke(comp, std::invoke(proj, p), std::invoke(proj, q)) evaluates to false.
  • A new element can be added using ranges::push_heap, in \(\scriptsize \mathcal{O}(\log N)\)π“ž(log N) time.
  • The first element can be removed using ranges::pop_heap, in \(\scriptsize \mathcal{O}(\log N)\)π“ž(log N) time.

Possible implementation

struct is_heap_until_fn
{
    template<std::random_access_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, std::indirect_strict_weak_order<
             std::projected<I, Proj>> Comp = ranges::less>
    constexpr I
        operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
    {
        std::iter_difference_t<I> n {ranges::distance(first, last)}, dad {0}, son {1};
        for (; son != n; ++son)
        {
            if (std::invoke(comp, std::invoke(proj, *(first + dad)),
                                  std::invoke(proj, *(first + son))))
                return first + son;
            else if ((son % 2) == 0)
                ++dad;
        }
        return first + n;
    }
 
    template<ranges::random_access_range R, class Proj = std::identity,
             std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>>
             Comp = ranges::less>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj));
    }
};
 
inline constexpr is_heap_until_fn is_heap_until {};

Example

The example renders a given vector as a (balanced) Binary tree.

#include <algorithm>
#include <cmath>
#include <iostream>
#include <iterator>
#include <vector>
 
void out(const auto& what, int n = 1)
{
    while (n-- > 0)
        std::cout << what;
}
 
void draw_bin_tree(auto first, auto last);
 
int main()
{
    std::vector<int> v {3, 1, 4, 1, 5, 9};
    std::ranges::make_heap(v);
 
    // probably mess up the heap
    v.push_back(2);
    v.push_back(6);
 
    out("v after make_heap and push_back: \n");
    draw_bin_tree(v.begin(), v.end());
 
    out("the max-heap prefix of v: \n");
    const auto heap_end = std::ranges::is_heap_until(v);
    draw_bin_tree(v.begin(), heap_end);
}
 
void draw_bin_tree(auto first, auto last)
{
    auto bails = [](int n, int w)
    {
        auto b = [](int w) { out("β”Œ"), out("─", w), out("β”΄"), out("─", w), out("┐"); };
        n /= 2;
        if (!n)
            return;
        for (out(' ', w); n-- > 0; )
            b(w), out(' ', w + w + 1);
        out('\n');
    };
    auto data = [](int n, int w, auto& first, auto last)
    {
        for(out(' ', w); n-- > 0 && first != last; ++first)
            out(*first), out(' ', w + w + 1);
        out('\n');
    };
    auto tier = [&](int t, int m, auto& first, auto last)
    {
        const int n {1 << t};
        const int w {(1 << (m - t - 1)) - 1};
        bails(n, w), data(n, w, first, last);
    };
    const auto size {std::ranges::distance(first, last)};
    const int m {static_cast<int>(std::ceil(std::log2(1 + size)))};
    for (int i {}; i != m; ++i)
        tier(i, m, first, last);
}

Output:

v after make_heap and push_back: 
       9               
   β”Œβ”€β”€β”€β”΄β”€β”€β”€β”       
   5       4       
 β”Œβ”€β”΄β”€β”   β”Œβ”€β”΄β”€β”   
 1   1   3   2   
β”Œβ”΄β” β”Œβ”΄β” β”Œβ”΄β” β”Œβ”΄β” 
6 
the max-heap prefix of v: 
   9       
 β”Œβ”€β”΄β”€β”   
 5   4   
β”Œβ”΄β” β”Œβ”΄β” 
1 1 3 2

See also

(C++20)
checks if the given range is a max heap
(niebloid)
(C++20)
creates a max heap out of a range of elements
(niebloid)
(C++20)
adds an element to a max heap
(niebloid)
(C++20)
removes the largest element from a max heap
(niebloid)
(C++20)
turns a max heap into a range of elements sorted in ascending order
(niebloid)
(C++11)
finds the largest subrange that is a max heap
(function template)

Β© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/is_heap_until