Defined in header <algorithm> | ||
|---|---|---|
| Call signature | ||
template< std::random_access_iterator I, std::sentinel_for<I> S,
class Proj = std::identity, std::indirect_strict_weak_order<
std::projected<I, Proj>> Comp = ranges::less >
constexpr I is_heap_until( I first, S last, Comp comp = {}, Proj proj = {} );
| (1) | (since C++20) |
template< ranges::random_access_range R, class Proj = std::identity,
std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>>
Comp = ranges::less >
constexpr ranges::borrowed_iterator_t<R>
is_heap_until( R&& r, Comp comp = {}, Proj proj = {} );
| (2) | (since C++20) |
Examines the range [first,Β last) and finds the largest range beginning at first which is a max heap.
comp and projection object proj.r as the range, as if using ranges::begin(r) as first and ranges::end(r) as last.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
| first, last | - | the range of elements to examine |
| r | - | the range of elements to examine |
| pred | - | predicate to apply to the projected elements |
| proj | - | projection to apply to the elements |
The upper bound of the largest range beginning at first which is a max heap. That is, the last iterator it for which range [first,Β it) is a max heap with respect to comp and proj.
Linear in the distance between first and last.
A max heap is a range of elements [f,Β l), arranged with respect to comparator comp and projection proj, that has the following properties:
N = l - f, p = f[(i - 1) / 2], and q = f[i], for all 0 < i < N, the expression std::invoke(comp, std::invoke(proj, p), std::invoke(proj, q)) evaluates to false. ranges::push_heap, in \(\scriptsize \mathcal{O}(\log N)\)π(log N) time. ranges::pop_heap, in \(\scriptsize \mathcal{O}(\log N)\)π(log N) time. struct is_heap_until_fn
{
template<std::random_access_iterator I, std::sentinel_for<I> S,
class Proj = std::identity, std::indirect_strict_weak_order<
std::projected<I, Proj>> Comp = ranges::less>
constexpr I
operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
{
std::iter_difference_t<I> n {ranges::distance(first, last)}, dad {0}, son {1};
for (; son != n; ++son)
{
if (std::invoke(comp, std::invoke(proj, *(first + dad)),
std::invoke(proj, *(first + son))))
return first + son;
else if ((son % 2) == 0)
++dad;
}
return first + n;
}
template<ranges::random_access_range R, class Proj = std::identity,
std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>>
Comp = ranges::less>
constexpr ranges::borrowed_iterator_t<R>
operator()(R&& r, Comp comp = {}, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj));
}
};
inline constexpr is_heap_until_fn is_heap_until {}; |
The example renders a given vector as a (balanced) Binary tree.
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iterator>
#include <vector>
void out(const auto& what, int n = 1)
{
while (n-- > 0)
std::cout << what;
}
void draw_bin_tree(auto first, auto last);
int main()
{
std::vector<int> v {3, 1, 4, 1, 5, 9};
std::ranges::make_heap(v);
// probably mess up the heap
v.push_back(2);
v.push_back(6);
out("v after make_heap and push_back: \n");
draw_bin_tree(v.begin(), v.end());
out("the max-heap prefix of v: \n");
const auto heap_end = std::ranges::is_heap_until(v);
draw_bin_tree(v.begin(), heap_end);
}
void draw_bin_tree(auto first, auto last)
{
auto bails = [](int n, int w)
{
auto b = [](int w) { out("β"), out("β", w), out("β΄"), out("β", w), out("β"); };
n /= 2;
if (!n)
return;
for (out(' ', w); n-- > 0; )
b(w), out(' ', w + w + 1);
out('\n');
};
auto data = [](int n, int w, auto& first, auto last)
{
for(out(' ', w); n-- > 0 && first != last; ++first)
out(*first), out(' ', w + w + 1);
out('\n');
};
auto tier = [&](int t, int m, auto& first, auto last)
{
const int n {1 << t};
const int w {(1 << (m - t - 1)) - 1};
bails(n, w), data(n, w, first, last);
};
const auto size {std::ranges::distance(first, last)};
const int m {static_cast<int>(std::ceil(std::log2(1 + size)))};
for (int i {}; i != m; ++i)
tier(i, m, first, last);
}Output:
v after make_heap and push_back:
9
βββββ΄ββββ
5 4
βββ΄ββ βββ΄ββ
1 1 3 2
ββ΄β ββ΄β ββ΄β ββ΄β
6
the max-heap prefix of v:
9
βββ΄ββ
5 4
ββ΄β ββ΄β
1 1 3 2|
(C++20) | checks if the given range is a max heap (niebloid) |
|
(C++20) | creates a max heap out of a range of elements (niebloid) |
|
(C++20) | adds an element to a max heap (niebloid) |
|
(C++20) | removes the largest element from a max heap (niebloid) |
|
(C++20) | turns a max heap into a range of elements sorted in ascending order (niebloid) |
|
(C++11) | finds the largest subrange that is a max heap (function template) |
Β© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/is_heap_until