Defined in header <algorithm> | ||
|---|---|---|
| Call signature | ||
template< std::random_access_iterator I, std::sentinel_for<I> S,
class Proj = std::identity, std::indirect_strict_weak_order<
std::projected<I, Proj>> Comp = ranges::less >
constexpr bool is_heap( I first, S last, Comp comp = {}, Proj proj = {} );
| (1) | (since C++20) |
template< ranges::random_access_range R, class Proj = std::identity,
std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>>
Comp = ranges::less >
constexpr bool is_heap( R&& r, Comp comp = {}, Proj proj = {} );
| (2) | (since C++20) |
Checks if the elements in range [first,Β last) are a max heap.
comp and projection object proj.r as the range, as if using ranges::begin(r) as first and ranges::end(r) as last.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
| first, last | - | the range of elements to examine |
| r | - | the range of elements to examine |
| pred | - | predicate to apply to the projected elements |
| proj | - | projection to apply to the elements |
true if the range is max heap, false otherwise.
Linear in the distance between first and last.
A max heap is a range of elements [f,Β l), arranged with respect to comparator comp and projection proj, that has the following properties:
N = l - f, p = f[(i - 1) / 2], and q = f[i], for all 0 < i < N, the expression std::invoke(comp, std::invoke(proj, p), std::invoke(proj, q)) evaluates to false. ranges::push_heap, in \(\scriptsize \mathcal{O}(\log N)\)π(log N) time. ranges::pop_heap, in \(\scriptsize \mathcal{O}(\log N)\)π(log N) time. struct is_heap_fn
{
template<std::random_access_iterator I, std::sentinel_for<I> S,
class Proj = std::identity, std::indirect_strict_weak_order<
std::projected<I, Proj>> Comp = ranges::less>
constexpr bool operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
{
return (last == ranges::is_heap_until(first, last,
std::move(comp), std::move(proj)));
}
template<ranges::random_access_range R, class Proj = std::identity,
std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>>
Comp = ranges::less>
constexpr bool operator()(R&& r, Comp comp = {}, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r),
std::move(comp), std::move(proj));
}
};
inline constexpr is_heap_fn is_heap {}; |
#include <algorithm>
#include <bit>
#include <cmath>
#include <iostream>
#include <vector>
void out(const auto& what, int n = 1) { while (n-- > 0) std::cout << what; }
void draw_heap(auto const& v);
int main()
{
std::vector<int> v {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8};
out("initially, v:\n");
for (auto i : v) std::cout << i << ' ';
out('\n');
if (!std::ranges::is_heap(v))
{
out("making heap...\n");
std::ranges::make_heap(v);
}
out("after make_heap, v:\n");
for (auto t {1U}; auto i : v)
std::cout << i << (std::has_single_bit(++t) ? " β " : " ");
out("\n" "corresponding binary tree is:\n");
draw_heap(v);
}
void draw_heap(auto const& v)
{
auto bails = [](int n, int w)
{
auto b = [](int w) { out("β"), out("β", w), out("β΄"), out("β", w), out("β"); };
n /= 2;
if (!n)
return;
for (out(' ', w); n-- > 0; )
b(w), out(' ', w + w + 1);
out('\n');
};
auto data = [](int n, int w, auto& first, auto last)
{
for (out(' ', w); n-- > 0 && first != last; ++first)
out(*first), out(' ', w + w + 1);
out('\n');
};
auto tier = [&](int t, int m, auto& first, auto last)
{
const int n {1 << t};
const int w {(1 << (m - t - 1)) - 1};
bails(n, w), data(n, w, first, last);
};
const int m {static_cast<int>(std::ceil(std::log2(1 + v.size())))};
auto first {v.cbegin()};
for (int i {}; i != m; ++i)
tier(i, m, first, v.cend());
}Output:
initially, v:
3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8
making heap...
after make_heap, v:
9 β 8 9 β 6 5 8 9 β 3 5 3 5 3 4 7 2 β 1 2 3 1
corresponding binary tree is:
9
βββββββββ΄ββββββββ
8 9
βββββ΄ββββ βββββ΄ββββ
6 5 8 9
βββ΄ββ βββ΄ββ βββ΄ββ βββ΄ββ
3 5 3 5 3 4 7 2
ββ΄β ββ΄β ββ΄β ββ΄β ββ΄β ββ΄β ββ΄β ββ΄β
1 2 3 1|
(C++20) | finds the largest subrange that is a max heap (niebloid) |
|
(C++20) | creates a max heap out of a range of elements (niebloid) |
|
(C++20) | adds an element to a max heap (niebloid) |
|
(C++20) | removes the largest element from a max heap (niebloid) |
|
(C++20) | turns a max heap into a range of elements sorted in ascending order (niebloid) |
|
(C++11) | checks if the given range is a max heap (function template) |
Β© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/is_heap